研究生: |
簡理軒 Chien, Li-Hsuan |
---|---|
論文名稱: |
硫化亞銅修飾二硫化錫形成奈米異質結構來提升光催化二氧化碳還原效率之研究 Cu2-xS decorated SnS2 for enhanced photocatalytic CO2 reduction by forming nanoscale heterostructure |
指導教授: |
陳家俊
Chen, Chia-Chun 陳貴賢 Chen, Kuei-Hsien 林麗瓊 Chen, Li-Chyong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 硫化亞銅 、二硫化錫 、異質結構 、二氧化碳還原 |
英文關鍵詞: | Cu2-xS, SnS2, CO2 reduction, heterostructure |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.038.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用人造光合成作用系統將二氧化碳還原轉換成碳氫化合物,作為未來新興的替代性能源,以期改善愈趨被重視的環境及能源議題,本研究以溶劑熱法合成二硫化錫與硫化亞銅,由於兩種材料的能隙大小與位置能讓二氧化碳還原反應發生,並以異質接面方式混合兩種半導體材料,有效的將激發後所產生的電子與電洞分離,並降低電子電洞輻射復合的現象,使其有較多的激子能夠飄移至材料表面進行二氧化碳還原反應;在本研究中,首先就材料的晶體結構、成份比例及元素、光學性質等特性分析,再利用氣相層析,發現二硫化錫與硫化亞銅分別能產出乙醛及甲醇,兩者材料在二氧化碳還原上具有不同之特性,經由混合兩材料形成異質結構,發現能產出乙醛與大量的乙醇,並有效地提高光化學量子轉換效率,可達到約0.048%,且乙醇是能作為燃料的碳氫化合物,最後藉由改變兩種材料的混合比例來優化反應效率,在不同比例下,本研究發現以0.5:1的比例混合硫化亞銅與二硫化錫,相較於其他比例,光化學量子轉換效率能提高至0.072%,從此研究,能證明利用p-n異質接面結構方法,能有效提高光觸媒在二氧化碳還原反應上的效率。
Formation of hydrocarbon from carbon dioxide via artificial photosynthesis is a new and developing alternative energy for solving the environmental energy issue which has gradually been emphasized seriously. We prepare the SnS2 and Cu2S by solvothermal method. The band gap and position of these two materials are suitable for photocatalytic CO2 reduction. We hybrid these two materials to be the heterojunction structure. By this modification, it can effectively separate the electron-hole pairs and suppress the charge recombination. There are more carriers which can diffuse to the surface and involve in CO2 reduction. At first, we analyze the crystal structure, composition and element, optical property. Then we detect the photocatalytic efficiency by gas chromatography. The SnS2 and Cu2S can produce the acetaldehyde and methanol respectively. They have different selectivity on CO2 reduction. After hybridization of these two materials and forming the heterostructure, it can produce the acetaldehyde and a lot of ethanol. The quantum efficiency is effectively increased and up to 0.058%. The ethanol is a well hydrocarbon as the fuel. At the last, we try to optimize the system by tuning the ratio of these two materials. When the ratio of these two material is 0.5:1, it has the highest quantum efficiency and up to 0.072%. By this study, the p-n junction structure can effectively enhance the photocatalytic CO2 reduction.
1. Leung, D. Y.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014, 39, 426-443.
2. Wu, X.; Yu, Y.; Qin, Z.; Zhang, Z., The advances of post-combustion CO2 capture with chemical solvents: review and guidelines. Energy Procedia 2014, 63, 1339-1346.
3. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275 (5676), 115.
4. Cao, Q.; Che, R.; Chen, N., Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental 2015, 162, 187-195.
5. Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A., Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. Journal of the American Chemical Society 2003, 125 (19), 5638-5639.
6. Chen, L.; Chen, Y.-B.; Wu, L.-M., Synthesis of Uniform Cu2S Nanowires from Copper− Thiolate Polymer Precursors by a Solventless Thermolytic Method. Journal of the American Chemical Society 2004, 126 (50), 16334-16335.
7. Lu, Q.; Gao, F.; Zhao, D., One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Letters 2002, 2 (7), 725-728.
8. Su, Y.; Lu, X.; Xie, M.; Geng, H.; Wei, H.; Yang, Z.; Zhang, Y., A one-pot synthesis of reduced graphene oxide–Cu 2 S quantum dot hybrids for optoelectronic devices. Nanoscale 2013, 5 (19), 8889-8893.
9. Enesca, A.; Isac, L.; Duta, A., Hybrid structure comprised of SnO2, ZnO and Cu2S thin film semiconductors with controlled optoelectric and photocatalytic properties. Thin Solid Films 2013, 542, 31-37.
10. Santra, P. K.; Kamat, P. V., Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. Journal of the American Chemical Society 2012, 134 (5), 2508-2511.
11. Pan, C.; Niu, S.; Ding, Y.; Dong, L.; Yu, R.; Liu, Y.; Zhu, G.; Wang, Z. L., Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano letters 2012, 12 (6), 3302-3307.
12. Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X., Near infrared absorption of CdSe x Te1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS nano 2013, 7 (6), 5215-5222.
13. Oktik, S.; Russell, G.; Woods, J., Single-crystal ZnxCd1− xS/Cu2S photovoltaic cells. Solar Cells 1982, 5 (3), 231-241.
14. Chang, J.-Y.; Su, L.-F.; Li, C.-H.; Chang, C.-C.; Lin, J.-M., Efficient “green” quantum dot-sensitized solar cells based on Cu 2 S–CuInS 2–ZnSe architecture. Chemical Communications 2012, 48 (40), 4848-4850.
15. Zhao, B.; Li, S.; Zhang, Q.; Wang, Y.; Song, C.; Zhang, Z.; Yu, K., Controlled synthesis of Cu2S microrings and their photocatalytic and field emission properties. Chemical engineering journal 2013, 230, 236-243.
16. Liu, Y.; Deng, Y.; Sun, Z.; Wei, J.; Zheng, G.; Asiri, A. M.; Khan, S. B.; Rahman, M. M.; Zhao, D., Hierarchical Cu2S microsponges constructed from nanosheets for efficient photocatalysis. Small 2013, 9 (16), 2702-2708.
17. Jiang, D.; Hu, W.; Wang, H.; Shen, B.; Deng, Y., Synthesis, formation mechanism and photocatalytic property of nanoplate-based copper sulfide hierarchical hollow spheres. Chemical engineering journal 2012, 189, 443-450.
18. Peng, M.; Ma, L.-L.; Zhang, Y.-G.; Tan, M.; Wang, J.-B.; Yu, Y., Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Materials Research Bulletin 2009, 44 (9), 1834-1841.
19. Bessekhouad, Y.; Brahimi, R.; Hamdini, F.; Trari, M., Cu2S/TiO2 heterojunction applied to visible light Orange II degradation. Journal of Photochemistry and Photobiology A: Chemistry 2012, 248, 15-23.
20. Li, S.; Yu, K.; Wang, Y.; Zhang, Z.; Song, C.; Yin, H.; Ren, Q.; Zhu, Z., Cu 2 S@ ZnO hetero-nanostructures: facile synthesis, morphology-evolution and enhanced photocatalysis and field emission properties. CrystEngComm 2013, 15 (9), 1753-1761.
21. Chen, Y.; Qin, Z.; Wang, X.; Guo, X.; Guo, L., Noble-metal-free Cu 2 S-modified photocatalysts for enhanced photocatalytic hydrogen production by forming nanoscale p–n junction structure. RSC Advances 2015, 5 (23), 18159-18166.
22. Schneider, S.; Ireland, J. R.; Hersam, M. C.; Marks, T. J., Copper (I) tert-butylthiolato clusters as single-source precursors for high-quality chalcocite thin films: film growth and microstructure control. Chemistry of materials 2007, 19 (11), 2780-2785.
23. Isac, L.; Duta, A.; Kriza, A.; Manolache, S.; Nanu, M., Copper sulfides obtained by spray pyrolysis—possible absorbers in solid-state solar cells. Thin Solid Films 2007, 515 (15), 5755-5758.
24. Martinson, A. B.; Riha, S. C.; Thimsen, E.; Elam, J. W.; Pellin, M. J., Structural, optical, and electronic stability of copper sulfide thin films grown by atomic layer deposition. Energy & Environmental Science 2013, 6 (6), 1868-1878.
25. Mousavi-Kamazani, M.; Salavati-Niasari, M.; Sadeghinia, M., Synthesis and characterization of Cu2S nanostructures via cyclic microwave radiation. Superlattices and Microstructures 2013, 63, 248-257.
26. Yu, X.; An, X., Controllable hydrothermal synthesis of Cu2S nanowires on the copper substrate. Materials Letters 2010, 64 (3), 252-254.
27. Chen, L.; Zou, Y.; Qiu, W.; Chen, F.; Xu, M.; Shi, M.; Chen, H., Hydrothermal synthesis of Cu2S nanocrystalline thin film on indium tin oxide substrate: Morphology, optical and electrical properties. Thin Solid Films 2012, 520 (16), 5249-5253.
28. Li, J.; Li, K.; Qiao, R.; Ying, T., Template-free synthesis of CuSCN and Cu2S crystallites with a facile hydrothermal method at different temperatures. Materials Science in Semiconductor Processing 2011, 14 (3-4), 306-310.
29. Mousavi-Kamazani, M.; Zarghami, Z.; Salavati-Niasari, M., Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. The Journal of Physical Chemistry C 2016, 120 (4), 2096-2108.
30. Yadav, S.; Bajpai, P., Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization. Nano-Structures & Nano-Objects 2017, 10, 151-158.
31. Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S., Freestanding tin disulfide single‐layers realizing efficient visible‐light water splitting. Angewandte Chemie International Edition 2012, 51 (35), 8727-8731.
32. Shown, I.; Samireddi, S.; Chang, Y.-C.; Putikam, R.; Chang, P.-H.; Sabbah, A.; Fu, F.-Y.; Chen, W.-F.; Wu, C.-I.; Yu, T.-Y., Carbon-doped SnS 2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nature communications 2018, 9 (1), 169.
33. Ma, J.; Lei, D.; Mei, L.; Duan, X.; Li, Q.; Wang, T.; Zheng, W., Plate-like SnS 2 nanostructures: hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 2012, 14 (3), 832-836.
34. Ma, D.; Zhou, H.; Zhang, J.; Qian, Y., Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals. Materials Chemistry and Physics 2008, 111 (2-3), 391-395.
35. Umar, A.; Akhtar, M.; Dar, G.; Abaker, M.; Al-Hajry, A.; Baskoutas, S., Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 2013, 114, 183-190.
36. Liu, H.; Su, Y.; Chen, P.; Wang, Y., Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. Journal of Molecular Catalysis A: Chemical 2013, 378, 285-292.
37. Lei, Y.; Song, S.; Fan, W.; Xing, Y.; Zhang, H., Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. The Journal of Physical Chemistry C 2009, 113 (4), 1280-1285.
38. Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J., A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis 2017, 352, 532-541.
39. Zhang, Y. C.; Du, Z. N.; Zhang, M., Hydrothermal synthesis of SnO2/SnS2 nanocomposite with high visible light-driven photocatalytic activity. Materials Letters 2011, 65 (19-20), 2891-2894.
40. Zhang, Y. C.; Du, Z. N.; Li, K. W.; Zhang, M.; Dionysiou, D. D., High-performance visible-light-driven SnS2/SnO2 nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS2 nanoparticles. ACS applied materials & interfaces 2011, 3 (5), 1528-1537.
41. Qu, Y.; Duan, X., Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews 2013, 42 (7), 2568-2580.
42. Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F. X.; Van Langenhove, H., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in biotechnology 2010, 28 (7), 371-380.
43. Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S., Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology advances 2011, 29 (2), 189-198.
44. Zeng, X.; Danquah, M. K.; Chen, X. D.; Lu, Y., Microalgae bioengineering: from CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews 2011, 15 (6), 3252-3260.
45. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M.; Junge, W.; Kramer, D. M.; Melis, A., Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. science 2011, 332 (6031), 805-809.
46. Chueh, W. C.; Haile, S. M., Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem 2009, 2 (8), 735-739.
47. Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M., Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. Journal of Electroanalytical Chemistry 1996, 412 (1-2), 125-132.
48. Jitaru, M.; Lowy, D.; Toma, M.; Toma, B.; Oniciu, L., Electrochemical reduction of carbon dioxide on flat metallic cathodes. Journal of Applied Electrochemistry 1997, 27 (8), 875-889.
49. Sutin, N.; Creutz, C.; Fujita, E., Photo-induced generation of dihydrogen and reduction of carbon dioxide using transition metal complexes. Comments on Inorganic Chemistry 1997, 19 (2), 67-92.
50. Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis today 2006, 115 (1-4), 2-32.
51. Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & engineering chemistry research 2006, 45 (8), 2558-2568.
52. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H., Photoinduced activation of CO 2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2 (7), 745-758.
53. Morris, A. J.; Meyer, G. J.; Fujita, E., Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Accounts of Chemical Research 2009, 42 (12), 1983-1994.
54. Biswas, P.; Wang, W.-N.; An, W.-J., The energy-environment nexus: aerosol science and technology enabling solutions. Frontiers of Environmental Science & Engineering in China 2011, 5 (3), 299.
55. Windle, C. D.; Perutz, R. N., Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coordination Chemistry Reviews 2012, 256 (21-22), 2562-2570.
56. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277 (5698), 637-638.
57. Liu, B.-J.; Torimoto, T.; Yoneyama, H., Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry 1998, 113 (1), 93-97.
58. Wang, W.-N.; Soulis, J.; Yang, Y. J.; Biswas, P., Comparison of CO2 photoreduction systems: a review. Aerosol and Air Quality Research 2014, 14 (2), 533-549.
59. Koffyberg, F.; Benko, F., A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO. Journal of Applied Physics 1982, 53 (2), 1173-1177.
60. Matsumoto, Y., Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. Journal of Solid State Chemistry 1996, 126 (2), 227-234.
61. de Jongh, P. E.; Vanmaekelbergh, D.; Kelly, J. J., Cu 2 O: a catalyst for the photochemical decomposition of water? Chemical Communications 1999, (12), 1069-1070.
62. Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X.-Y., Valence band alignment at cadmium selenide quantum dot and zinc oxide (1010) interfaces. The Journal of Physical Chemistry C 2008, 112 (22), 8419-8423.
63. Xu, Y.; Schoonen, M. A., The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 2000, 85 (3-4), 543-556.
64. Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M.; An, X.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J., Interfacial charge separation in Cu 2 O/RuO x as a visible light driven CO 2 reduction catalyst. Physical Chemistry Chemical Physics 2014, 16 (13), 5922-5926.
65. Handoko, A. D.; Tang, J., Controllable proton and CO2 photoreduction over Cu2O with various morphologies. international journal of hydrogen energy 2013, 38 (29), 13017-13022.
66. Yahaya, A.; Gondal, M.; Hameed, A., Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chemical physics letters 2004, 400 (1-3), 206-212.
67. Liu, Y.; Huang, B.; Dai, Y.; Zhang, X.; Qin, X.; Jiang, M.; Whangbo, M.-H., Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catalysis Communications 2009, 11 (3), 210-213.
68. Kumagai, H.; Sahara, G.; Maeda, K.; Higashi, M.; Abe, R.; Ishitani, O., Hybrid photocathode consisting of a CuGaO 2 p-type semiconductor and a Ru (ii)–Re (i) supramolecular photocatalyst: non-biased visible-light-driven CO 2 reduction with water oxidation. Chemical science 2017, 8 (6), 4242-4249.
69. Ida, S.; Yamada, K.; Matsunaga, T.; Hagiwara, H.; Ishihara, T.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y., Photoelectrochemical hydrogen production from water using p-type CaFe2O4 and n-Type ZnO. Electrochemistry 2011, 79 (10), 797-800.
70. Liu, Q.; Zhou, Y.; Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z., High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society 2010, 132 (41), 14385-14387.
71. Liu, Q.; Zhou, Y.; Tian, Z.; Chen, X.; Gao, J.; Zou, Z., Zn 2 GeO 4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO 2 into CH 4 under visible light after nitridation. Journal of Materials Chemistry 2012, 22 (5), 2033-2038.
72. Guan, G.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A., Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Applied catalysis A: general 2003, 249 (1), 11-18.
73. 張華生, 調變銅錫硫三元化合物之硫含量應用於高效率可見光二氧化碳還原與轉換之研究. 2017.
74. Yu, X.; Shavel, A.; An, X.; Luo, Z.; Ibáñez, M.; Cabot, A., Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. Journal of the American Chemical Society 2014, 136 (26), 9236-9239.
75. Zubair, M.; Razzaq, A.; Grimes, C. A.; In, S.-I., Cu2ZnSnS4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4. Journal of CO2 Utilization 2017, 20, 301-311.
76. Kim, K.; Razzaq, A.; Sorcar, S.; Park, Y.; Grimes, C. A.; In, S.-I., Hybrid mesoporous Cu 2 ZnSnS 4 (CZTS)–TiO 2 photocatalyst for efficient photocatalytic conversion of CO 2 into CH 4 under solar irradiation. RSC Advances 2016, 6 (45), 38964-38971.