簡易檢索 / 詳目顯示

研究生: 張瑀芳
Chang, Yu-Fang
論文名稱: 消渴草減輕高脂飼料及Streptozotocin誘導第二型糖尿病大鼠主動脈損傷之研究
Alleviative Effect of Ruellia tuberosa L. on Aorta Damage in High-Fat Diet plus Streptozotocin Induced Type 2 Diabetic Rats
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 第二型糖尿病消渴草主動脈損傷
英文關鍵詞: Type 2 diabetes mellitus, Ruellia tuberosa L., Aorta damage
論文種類: 學術論文
相關次數: 點閱:189下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第二型糖尿病 (type 2 diabetes mellitus, Type 2 DM)因胰島素阻抗 (insulin resistance) 造成高胰島素血症 (hyperinsulinemia),而高胰島素血症與高葡萄糖血症 (hyperglycemia)為糖尿病血管病變的重要影響因子。糖尿病血管病變包含大血管 (macrovascular) 及小血管 (microvascular) 病變,其中大血管病變常見為動脈粥狀硬化症,易造成患者心臟疾病的發生並導致死亡。研究指出,消渴草 (Ruellia tuberosa L.) 具有抗氧化、抗發炎、抗癌等生理活性,亦可調節糖尿病大鼠之血脂平衡。本研究首先以小鼠肌肉C2C12細胞進行細胞試驗,結果顯示,在測試濃度(25、50、100、200、400及800μg/ml)下消渴草水及乙醇萃取物皆不具有細胞毒性;接著建立以TNF-α誘導胰島素阻抗細胞模式,發現在TNF-α 10ng/ml的濃度下,可有效誘導C2C12細胞產生胰島素阻抗;之後再以此細胞模式篩選具改善胰島素阻抗潛力之消渴草萃取物,結果顯示,不論是水或乙醇之消渴草萃取物,在濃度25μg/ml下即具有改善胰島素阻抗之C2C12細胞葡萄糖攝入之能力(p<0.05)。動物試驗結果顯示,每日餵食消渴草水及乙醇萃取物(劑量100與400mg/kg BW/day) 4週後可顯著改善高脂飼料及STZ誘導第二型糖尿病大鼠葡萄糖耐受能力。血液分析的結果顯示,消渴草萃取物可調節血脂及降低發炎反應相關因子,如:TNF-α, IL-6, VCAM-1, ICAM-1的含量;組織分析結果顯示,消渴草萃取物可增加抗氧化酵素SOD的活性及catalase的活性,並且降低發炎反應相關黏附因子MCP-1, VCAM-1的含量(p<0.05)。此外,消渴草萃取物可降低血管傷害相關因子,如:eNOS, ET-1, TF, vWF的含量(p<0.05),使其恢復至正常值。
    由上述結果推測,消渴草可以透過改善胰島素阻抗、發炎反應、氧化壓力等作用,而達到減輕高脂飼料及STZ誘導第二型糖尿病大鼠主動脈損傷之效果。

    The diabetes mellitus patients are mainly Type 2 DM, which is characterized by hyperinsulinemia resulted from insulin resistance. Researches indicated that hyperinsulinemia and hyperglycemia are important factors in diabetic vascular disease, including macrovascular and microvascular disease. Ruellia tuberosa L. (RTL) was used as folklore medicine for diabetes in Asia as well as Taiwan. RTL was previously reported to exhibit anti-oxidant, anti-inflammatory and anti-cancer abilities. The mouse muscle myotube C2C12 cells were treated with 10ng/mL TNF-α to induce insulin resistance. These cells were subsequently co-incubated with water or ethanol extract from RTL. The uptake of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin-resistant C2C12 cells was used as a platform for screening extracts from RTL with the anti-hyperglycemic potential. The protective effect of RTL extract on aorta damage in high-fat diet plus streptozotocin induced T2DM rats was further investigated. The results show that both water and ethanol extracts from RTL (25μg/ml) significantly improves the glucose uptake in insulin-resistant C2C12 cells (p< 0.05). Both water and ethanol extracts from RTL (100 and 400mg/kg BW/day) significantly decreases plasma glucose level, decreases the concents of serum TNF-α, IL-6 and VCAM-1. The enzyme-linked immunosorbent analysis suggested that RTL decreases the contents of MCP-1, VCAM-1 and recovers the contents of eNOS, ET-1, TF and vWF in the aortas of diabetic rats.
    The above observations suggested that RTL may alleviate the aorta damage via improving insulin resistance, inflammation and oxidative stress in high-fat diet plus STZ induced T2DM rats.

    中文摘要 I Abstract II 目錄 III 圖次 VII 表次 IX 第一章 前言 1 第二章 文獻回顧 3 第一節 糖尿病 3 一、 糖尿病簡介 3 二、 糖尿病流行病學 3 三、 糖尿病分類 5 四、 糖尿病診斷標準 9 五、 成人糖尿病血糖控制建議 10 六、 胰島素抗性致敏劑(Thiazolidinediones, TZDs)藥物 11 第二節 胰島素阻抗 13 一、 胰島素阻抗 13 二、 胰島素阻抗之機制 13 三、 骨骼肌細胞胰島素阻抗之機制 15 第三節 消渴草植物之相關研究 17 一、 台灣常見治療糖尿病之植物與相關研究 17 二、 消渴草 (Ruellia tuberosa Linn., RTL) 簡介 17 三、 消渴草植物之相關研究 18 第四節 第二型糖尿病與心血管疾病 20 一、 第二型糖尿病與心血管疾病相關研究 20 二、 連結第二型糖尿病與心血管疾病的可能機制 21 第三章 研究動機與目的及實驗架構 29 第一節 研究動機與目的 29 第二節 實驗架構 30 第四章 消渴草萃取物於胰島素阻抗細胞之葡萄糖攝入探討 31 第一節 實驗材料 31 一、 實驗樣品來源 31 二、 實驗細胞 31 三、 實驗藥品與試劑 31 四、 儀器設備 32 第二節 實驗步驟與方法 34 一、 消渴草水萃取物及乙醇萃取物之製備 34 二、 實驗樣品配製 34 三、 實驗藥品配製 34 四、 小鼠肌肉細胞 C2C12 之保存與培養 35 五、 C2C12 細胞由纖維母細胞 (myoblast) 分化為管狀細胞 (myotube) 35 六、 C2C12 細胞生長存活率試驗 (MTT assay) 36 七、 C2C12 細胞對2-NBDG 染劑之攝入作用 36 八、 細胞蛋白質定量 38 九、 TNF-α 誘導 C2C12 細胞胰島素阻抗 38 十、 消渴草水及乙醇萃取物對具胰島素阻抗之 C2C12 細胞葡萄糖攝入作用 39 十一、 統計分析 39 第三節 結果 40 一、 消渴草水及乙醇萃取物對 C2C12 細胞生長存活率 (cell viability)的影響 40 二、 C2C12 細胞對 2-NBDG 染劑攝入之條件探討 40 三、 TNF-α 誘導 C2C12 細胞胰島素阻抗模式之建立 41 四、 消渴草水及乙醇萃取物對具胰島素阻抗之 C2C12 細胞葡萄糖攝入作用之影響 41 第四節 討論 42 一、 消渴草水及乙醇萃取物對 C2C12 細胞生長存活率 (cell viability)的影響 42 二、 C2C12 細胞對 2-NBDG 染劑攝入之影響 42 三、 TNF-α 誘導 C2C12 細胞胰島素阻抗之影響 43 四、 消渴草水及乙醇萃取物對具胰島素阻抗之 C2C12 細胞葡萄糖攝入作用之影響 43 第五節 結論 45 第五章 消渴草減輕高脂飼料及STZ誘導第二型糖尿病大鼠主動脈損傷之研究 52 第一節 實驗材料 52 一、 實驗樣品來源 52 二、 實驗動物 52 三、 實驗動物墊料 52 四、 實驗動物飼料 52 五、 實驗藥品與試劑 53 六、 儀器設備 55 第二節 實驗步驟與方法 57 一、 實驗樣品配製 57 二、 實驗藥品配製 57 三、 實驗動物飼養 58 四、 實驗動物誘導及分組 58 五、 試驗方法 59 六、 統計分析 70 第三節 結果 71 一、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠生理、生化數值之影響 71 二、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈病理切片觀察 75 三、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈抗氧化酵素活性之影響 76 四、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈發炎反應相關黏附因子之影響 77 五、 消渴草萃取物對減輕高脂飼料及STZ誘導第二型糖尿病大鼠主動脈損傷的影響 77 第四節 討論 80 一、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠生理、生化數值之影響 80 二、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈病理切片之影響 83 三、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈抗氧化酵素 SOD表現與Catalase活性之影響 85 四、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈發炎反應相關黏附因子MCP-1、VCAM-1之影響 85 五、 消渴草萃取物對高脂飼料及STZ誘導第二型糖尿病大鼠主動脈損傷相關因子的影響 86 第五節 結論 91 第六章 參考文獻 114

    Abeyrathna, P., & Su, Y. (2015). The critical role of Akt in cardiovascular function. Vascular Pharmacology, doi:10.1016/j.vph.2015.05.008
    Agapitov, A. V, & Haynes, W. G. (2002). Role of endothelin in cardiovascular disease. Journal of the Renin-Angiotensin-Aldosterone System, 3(1), 1–15.
    Aguila, L. F. Del., Claffey, K. P., Kirwan, J. P., Aguila, D., Luis, F., Claffey, K. P., & John, P. (1999). TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. The American Physiological Society, 849–855.
    American Diabetes Association. (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care, S81–90. doi:10.2337/dc14-S081
    Ananthakrishnan M. and Aroki Doss V.. (2013) Effect of 50% Hydro-Ethanolic Leaf Extracts of Ruellia Tuberosa L. and Dipteracanthus Patulus (Jacq.) on Lipid Profile in Alloxan Induced Diabetic Rats. International Journal of Preventive Medicine; 4(7): 744-747.
    Arora, A., & Dey, C. S. (2014). SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochemical et Biophysical Acta, 1842(9), 1372–8. doi:10.1016/j.bbadis.2014.04.027
    Arun S, Giridharan P, Suthar A, Kulkarni-Almeida A, Naik V, Velmurugan R, Ram V, et al. (2008) Isolation of Tylocrebrine from Ruellia tuberosa through bioassay directed column chromatography and elucidating its anti-cancer and anti-inflammatory potential. Book of Abstracts, 7th Joint Meeting of GA, AFERP, ASP, PSI & SIF, Athens, Greece; 25.
    Ashraful Alam M, Nusrat Subhan et al. (2009) Antinociceptive and anti-inflammatory properties of Ruellia tuberosa. Pharmaceutical Biology; 47(3): 209–214.
    B Arirudran, A. S. and V. krishnamurthy. (2011). Evaluation of antioxidant potential of Ruellia tuberosa L . using in-vitro model. Journal of Pharmacy Research, 4(12), 4344–4347.
    Balakumar, P. (2014). Implications of Fundamental Signalling Alterations in Diabetes mellitus-associated Cardiovascular Disease. Indian Journal of Biochemistry & Biophysics, 441–448.
    Basili S, Pacini G, Guagnano MT, Manigrasso MR, Santilli F, Pettinella C, Ciabattoni G, Patrono C, Davi G. (2006) Insulin resistance as a determinant of platelet activation in obese women. Journal of the American College of Cardiology, 48:2531–2538.
    Beckman JA, Creager MA, Libby P. (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. Journal of the American Medical Association, 287:2570–2581.
    Boden G, Rao AK. (2007) Effects of hyperglycemia and hyperinsulinemia on the tissue factor pathway of blood coagulation. Current Diabetes Reports, 7:223–227.
    Busik, J. V, & Grant, M. B. (2014). Aldose reductase meets histone acetylation: a new role for an old player. Diabetes, 63(2), 402–4. doi:10.2337/db13-1696
    Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA, Donath MY. (2012) Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care, 35:1654–1662.
    Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States. (2014) Atlanta, GA: U.S. Department of Health and Human Services; 2014.
    Chang WC, Shen SC. (2013) Effect of water extracts from edible Myrtaceae plants on uptake of 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose in TNF-α-treated FL83B mouse hepatocytes. Phytotherapy Research, 27(2):236-43. doi: 10.1002/ptr.4681.
    Chang WC, Shen SC, Wu JS. (2013) Protective effects of vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit against methylglyoxal-induced inflammation and carbohydrate metabolic disorder in rats. Journal of Agricultural and Food Chemistry, 61(29):7102-9. doi: 10.1021/jf4020284.
    Chen FA, Wu AB, Shieh P, Kuo DH, Hsieh CY. (2006) Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chemistry, 94: 14–18.
    Chothani, D. L., Patel, M., Mishra, S., & Vaghasiya, H. (2010). Review on Ruellia tuberosa (Cracker plant). Pharmacognosy Journal, 2(12), 506–512. doi:10.1016/S0975-3575(10)80040-9
    Chwan-Fwu Lin et. al. (2006) Bioactive flavonoid from Ruellia tuberosa. J Chin Med, 17(3): 103–109.
    Creager MA, Luscher TF, Cosentino F, Beckman JA. (2003) Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation ,108:1527–1532.
    Dechend, R., Homuth, V., Wallukat, G., Kreuzer, J., Park, J. K., Theuer, J., … Luft, F. C. (2000). AT1 Receptor Agonistic Antibodies From Preeclamptic Patients Cause Vascular Cells to Express Tissue Factor. Circulation, 101(20), 2382–2387. doi:10.1161/01.CIR.101.20.2382
    Dormandy, J. a, Charbonnel, B., Eckland, D. J. a, Erdmann, E., Massi-Benedetti, M., Moules, I. K., … Taton, J. (2005). Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet (London, England), 366(9493), 1279–89. doi:10.1016/S0140-6736(05)67528-9.
    Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG. (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxidesynthase expression by hydrogen peroxide. Circulation Research, 86:347–354.
    Ferreira IA, Mocking AI, Feijge MA, Gorter G, van Haeften TW, Heemskerk JW, Akkerman JW. (2006) Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arteriosclerosis Thrombosis and Vascular Biology Journal 26:417–422.
    Förstermann, U., & Münzel, T. (2015). Basic Science for Clinicians Endothelial Nitric Oxide Synthase in Vascular Disease. Circulation, 1708–1715. doi:10.1161/CIRCULATIONAHA.105.602532
    Francesco Paneni 1,2 , Joshua A. Beckman 3 , Mark A. Creager 3 , and Francesco Cosentino.(2013) European Heart Journal, 34, 2436–2446. doi:10.1093/eurheartj/eht149.
    Frankel, D. S., Meigs, J. B., Massaro, J. M., Wilson, P. W. F., Donnell, C. J. O., Agostino, R. B. D., & Tofler, G. H. (2009). Von Willebrand Factor, Type 2 Diabetes and Risk of Cardiovascular Disease: The Framingham Offspring Study. Circulation,118(24),617–624.doi:10.1161/CIRCULATIONAHA.108.792986.
    Hollenberg NK. (2003)Considerations for management of fluid dynamic issues associated with thiazolidinediones. American Journal of Medicine,115(Suppl 8A):111S–115S.
    Holy, E. W., & Tanner, F. C. (n.d.). Tissue Factor in Cardiovascular Disease : Pathophysiology and Pharmacological Intervention. Advances In Pharmacology Volume ,59 (Vol. 59, pp. 259–292). (Elsevier Inc.) doi:10.1016/S1054-3589(10)59009-4
    Jorge Plutzky, MD, Robert S. Rosenson, MD, FACC (2012). PPARs and Cardiovascular Disease Risk Reduction in Patients with Type 2 Diabetes. CMEology, http://www.medscape.org/viewarticle/765568.
    Julia V. Busik & Maria B. Grant. (2014) Aldose Reductase Meets Histone Acetylation: A New Role for an Old Player. Diabetes, 63:402–404|doi: 10.2337/db13-1696.
    Kazuomi Kario, Takefumi Matsuo, Hiroko Kobayashi, Miyako Matsuo, Toshiyuki Sakata, Toshiyuki Miyata, K. S. (1996). Factor VII Hyperactivity and Endothelial Cell Damage Are Found in Elderly Hypertensives Only When Concomitant With Microalbuminuria. Arteriosclerosis, Thrombosis, and Vascular Biology, 16: 455–46.
    Kersten S, Desvergne B, Wahli W. (2000) Roles of PPARs in health and disease. Nature;405:421–424.
    Kim JK. (2012) Endothelial nuclear factor kappab in obesity and aging: is endothelial nuclear factor kappaB a master regulator of inflammation and insulin resistance? Circulation ;125:1081–1083.
    Kushner, R. F., & Sujak, M. (2009). Prevention of weight gain in adult patients with type 2 diabetes treated with pioglitazone. Obesity (Silver Spring, Md.), 17(5), 1017–22. doi:10.1038/oby.2008.651
    Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. (2010) Hyperglycemia: a prothrombotic factor? Journal of Thrombosis and Haemostasis; 8:1663–1669.
    Luscher TF, Creager MA, Beckman JA, Cosentino F. (2003) Diabetes and vascular disease: pathophysiology, clinical consequences and medical therapy. Circulation ;108:1655–61.
    Miller, D. L., Welty-Wolf, K., Carraway, M. S., Ezban, M., Ghio, A., Suliman, H., et al. (2002). Extrinsic coagulation blockade attenuates lung injury and proinflammatory cytokine release after intratracheal lipopolysaccharide. American Journal of Respiratory Cell and Molecular Biology, 26(6), 650–658.
    Miyauchi T, Goto K. Endothelins. In: Kastin Abba J, editor. Handbook of biologically active peptides. (2013) Academic Press (Elsevier Inc.); p. 1402–7.
    Miyauchi, Y., Jesmin, S., Sakai, S., Kamiyama, J., Shimojo, N., & Rahman, A. (2014). Effects of selective endothelin ( ET ) -A receptor antagonist versus dual ET-A / B receptor antagonist on hearts of streptozotocin-treated diabetic rats. Life Sciences, 111(1-2), 6–11. doi:10.1016/j.lfs.2014.06.008
    Naseem, K. M. (2005). The role of nitric oxide in cardiovascular diseases. Molecular Aspects of Medicine, 26, 33–65. doi:10.1016/j.mam.2004.09.003
    Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. The Journal of the American Medical Association, 2008;299(13):1561-1573.
    Ohkita M, Tawa M, Kitada K, Matsumura Y. (2012) Pathophysiological roles of endothelin receptors in cardiovascular diseases. Journal of Pharmacological Sciences, 119(4):302-313
    Paneni, F., Beckman, J. a, Creager, M. a, & Cosentino, F. (2013). Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. European Heart Journal, 34(31), 2436–43. doi:10.1093/eurheartj/eht149
    Saltiel AR, Kahn CR. (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature ;414:799–806.
    Samuel, V. T., & Shulman, G. I. (2012). Mechanisms for insulin resistance: common threads and missing links. Cell, 148(5), 852–71. doi:10.1016/j.cell.2012.02.017
    Sasidharan, S. R., Joseph, J. A., Anandakumar, S., Venkatesan, V., Ariyattu Madhavan, C. N., & Agarwal, A. (2013). An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. BioMed Research International, 752870. doi:10.1155/2013/752870
    Schramm TK, Gislason GH, Køber L, Rasmussen S, Rasmussen JN, Abildstrøm SZ, et al. (2008) Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation ;117:1945–54.
    Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Hwyman, R.A., Briggs, M., Deeb, S., Auwerx, J. (1996). PPARalpha and PPARgamma activators direct adistinct tissue-specific transcriptional response via PPRE in the lipoproteiom lipase gene. The EMBO journal, 15(19), 5336-5348.
    Shantikumar S, Caporali A, Emanueli C. (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovascular Research, 93:583–593.
    Shen, S. C.,Cheng, F. C., Wu, N. J. (2008) Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats. Phytotherapy Research, 22, 1458-64.
    Spiel, A. O., Gilbert, J. C., & Jilma, B. (2008). Von Willebrand Factor in Cardiovascular Disease Focus on Acute Coronary Syndromes. Circulation., 117:1449–1459. doi:10.1161/CIRCULATIONAHA.107.722827
    Sun, J., Zhang, X., Broderick, M., Fein, H., Instruments, W. P., & International, S. (2003). Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. Sensors, 276–284.
    Tsimerman G, Roguin A, Bachar A, Melamed E, Brenner B, Aharon A. (2011) Involvement of microparticles in diabetic vascular complications. Journal of Thrombosis and Haemostasis, 106:310–321.
    Tsunekawa, T., Hayashi, T., Kano, H., & Sumi, D. (2001). Brief Rapid Communications Reductase Inhibitor , Improves Endothelial Function in Elderly Diabetic Patients Within 3 Days. Circulation, 104:376–379.
    Vamecq J, Latruffe N. Medical significance of peroxisome proliferator-activated receptors. (1999) Lancet;354:141–148.
    Vazzana, N., Ranalli, P., Cuccurullo, C., & Davì, G. (2012). Diabetes mellitus and thrombosis. Thrombosis Research, 129(3), 371–7. doi:10.1016/j.thromres.2011.11.052
    Verma, S., Li, S.-H., Wang, C.-H., Fedak, P. W. M., Li, R.-K., Weisel, R. D., & Mickle, D. a G. (2003). Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation, 108(6), 736–40. doi:10.1161/01.CIR.0000084503.91330.49
    Yamagishi, S. I., Edelstein, D., Du, X. L., Kaneda, Y., Guzmán, M., & Brownlee, M. (2001). Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. The Journal of Biological Chemistry, 276(27), 25096–100. doi:10.1074/jbc.M007383200
    Yang, M., Wei, D., Mo, C., Zhang, J., Wang, X., Han, X., Xiao, H. (2013). Saturated fatty acid palmitate-induced insulin resistance is accompanied with myotube loss and the impaired expression of health benefit myokine genes in C2C12 myotubes. Lipids in Health and Disease, 12(1), 104. doi:10.1186/1476-511X-12-104
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M. (2010) Plasma microrna profiling reveals loss of endothelial mir-126 and other microRNAs in type 2 diabetes. Circulation Research, 107:810–817.
    Zampetaki A, Mayr M. (2012) MicroRNAs in vascular and metabolic disease. Circulation Research, 110:508–522.
    Zheng, X., Zhu, S., Chang, S., Cao, Y., Dong, J., Li, J., Zhou, Y. (2013). Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: Role of NF-kappa B signaling. European Journal of Pharmacology, 720(1-3), 147–157. doi:10.1016/j.ejphar.2013.10.034
    Zou, C., Wang, Y., & Shen, Z. (2005). 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Journal of Biochemical and Biophysical Methods, 64(3), 207–15. doi:10.1016/j.jbbm.2005.08.001
    洪心容(2005)。台灣產九種治療糖尿病藥用植物之抗氧化及降血糖相關性之研究(碩士論文)。中國醫藥大學藥學院中國藥學研究所。
    張文昌(2010)。食用桃金孃科植物萃取物減輕小鼠肝臟細胞(FL83B)胰島素阻抗之探討(碩士論文)。國立臺灣大學食品科技研究所。
    張文昌(2014)。Vescalagin預防Methylglyoxal誘發大鼠醣類代謝異常之研究(博士論文)。國立臺灣大學食品科技研究所。
    郭柏伶(2013)。咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝之研究(碩士論文)。國立臺灣師範大學人類發展與家庭學系。
    陳甄雯(2013)。香草酸對餵食高脂飼料大鼠血糖與血脂之影響(碩士論文)。國立臺灣大學食品科技研究所。
    鄭勤巧(2014)。咖啡酸預防高胰島素血症大鼠阿茲海默症之機制(碩士論文)。國立臺灣師範大學人類發展與家庭學系。

    下載圖示
    QR CODE