研究生: |
王雅唐 Wang, Ya-Tang |
---|---|
論文名稱: |
空間能力對同步多影像擴增實境教學於認知負荷之影響 Influences of Spatial Ability on Cognitive Load While Employing Synchronized Multi-display Augmented Reality |
指導教授: |
王健華
Wang, Chien-Hwa |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系 Department of Graphic Arts and Communications |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 認知負荷 、空間能力 、同步多影像擴增實境 、月相與潮汐教學 |
英文關鍵詞: | cognitive load, spatial ability, Synchronized multi-display augmented reality, moon and tidal teaching |
DOI URL: | https://doi.org/10.6345/NTNU202203266 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:61 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於自然科學教育而言,抽象概念常常是學習與教學的困難之處,傳統教學很難將抽象的概念具體呈現於教學之中,造成學生依然存有迷思概念。近年來認為透過數位教材的輔助來改善教學方法是有效的,而擴增實境是其中的一種方式。但是有教材設計原則指出,不同的教材呈現方式將會造成學習者認知負荷上的影響,因此教材與教學方法的改變,對於學習者所造成的認知負荷是值得重視的。
本研究使用同步多影像擴增實境系統,與以往擴增實境應用於教學有所不同。同步多影像顯示擴增實境是一種連影連動的擴增實境顯示方式,讓學生能夠同時學習多個概念。利用同步多影像顯示擴增實境進行月相教學,並探討其與單影像、傳統投影片的教學是否有成效差別。以自然科學教育中容易造成迷思概念的月相與潮汐做為題材,並加入空間能力做為學習者之個人變項。
研究對象分為三組,分別採用傳統投影片、單影像擴增實境及同步多影像擴增實境,事前進行空間能力量表測驗,並依據量表成績分為高、中、低能力者,接著進行約一個小時的教學實驗,透過月相單元測驗卷前後測及認知負荷量表來探討不同教學方法與不同空間能力於月相教學中,對認知負荷與教學方法的影響。
研究結果發現,教學方法和空間能力對於認知負荷皆無顯著差距,代表擴增實境融於月相教學中並不會對學習者帶來額外的認知負荷;學習成效而言,教學方法與空間能力之間並無交互作用,單獨來看則是單影像組優於其他兩組、高空間能力優於其他兩者。
因此本研究認為,雖然擴增實境融於課程,並不會造成額外的認知負荷,但仍須考量到學習對象是否適用,才能有助於提升學習成效。
The abstract concept seems to be difficult in learning and teaching for natural science education. The traditional teaching can hardly materialize abstract concepts in teaching, causing students’ misconceptions. In recent years, it’s believed that auxiliary digital materials can be effectively used to improve the teaching method, of which augmented reality is one of the methods. However, design principles in some textbooks point out that different presentation of textbooks will exert influence on the learners' cognitive load. Therefore, it is worthy of attention for the cognitive load of learners caused by the teaching materials and teaching methods change.
Contrast to the application of augmented reality in traditional teaching, the synchronized multi-display augmented reality system is used in this study. The synchronized multi-display adopts linked augmented reality to display augmented reality, which enables students to learn several concepts once. The synchronized multi-display augmented reality is adopted for teaching Phases of the Moon, in which the imaging difference with the effect of single image and traditional teaching slides is researched. The phase of the moon and tide, which is easy to cause the misconception in science education, is taken as the theme, and the spatial ability is added as individual learners’ variables.Research subjects were divided into three groups, respectively, the traditional image slides, single-display augmented reality and synchronized multi-display augmented reality. The spatial scale test was conducted before this step, which can determine high, middle and low ability individuals. Next, one hour of teaching experiment is carried out. The unit test and the cognitive load scale was applied to investigate the different teaching methods and different spatial abilities’ influence on cognitive load and teaching method in the phases of the moon teaching.
The results found that the teaching method and the spatial ability had no significant impact on cognitive load, demonstrating that the use of augmented reality into moon phase teaching will not bring additional cognitive load to the learner; in terms of learning effectiveness, no interaction exists in teaching method and spatial ability. Independently, single image group was better than the other two groups and high space ability group was also better than the other two groups.Therefore, according to this research, the augmented reality will not cause additional cognitive load even if being included in the curriculum. However, the applicability of learning objects shall also be considered so as to enhance their learning effectiveness.
中文參考文獻
王美芬(1991)。自然科錯誤之研究。台北市立師範學院學報, 22, 367-400。
王美芬(1992)。我國五, 六年級學生有關月亮錯誤概念的診斷及補救教學策略的應用. 臺北市立師範學院學報,23,357-380。
王維洸(2015)。連動式多影像擴增實境之潮汐模擬教學系統開發(未出版之碩士論文),國立臺灣師範大學,臺北市。
余芳如(2004)。不同教學策略對國小高年級學生學習「月相盈虧」概念的影響(未出版碩士論文),國立花蓮師範學院,花蓮縣。
宋曜廷(2000)。先前知識文章結構和多媒體呈現對文章學習的影響(未出版之 博士論文)。國立臺灣師範大學,臺北市。
凃金堂(2012)。應用認知負荷理論的數學解題教學實驗。屏東教育大學學報- 教育類,38,227-256。
張春興(1997)。教育心理學。臺北:五南圖書。
教育部(2008)。國民中小學九年一貫課程綱要自然與生活科技領域。
梁勇能(2000)動態幾何環境下,國二學生空間能力學習之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
莊孟軒(2015)。以同步多影像顯示擴增實境運用於潮汐教學對認知負荷之影響(未出版之碩士論文),國立臺灣師範大學,臺北市。
郭重吉(2001)。浸談建構主義在數理教學上的應用。建構與教學,16。
陳英嫻、邱美虹(1995)。月相盈虧之概念改變。師大學報。
英文參考文獻
Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
Baxter, J. (1989). Children's understanding of familiar astronomical events.International Journal of Science Education, 11(5), 502-513.
British Educational Communications and Technology Agency. (2004). Getting the most from your interactive whiteboard: A guide for primary schools. Becta.
Cheng, T. S., Lu, Y. C., & Yang, C. S. (2015). Using the multi-display teaching system to lower cognitive load. Journal of Educational Technology & Society,18(4), 128-140.
Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). An Augmented Reality-based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities. Educational Technology & Society, 17(4), 352-365.
Eder, D. (1981). Ability grouping as a self-fulfilling prophecy: A micro-analysis of teacher-student interaction. Sociology of Education, 54(3), 151-162. doi:10.2307/2112327
Gerjets, P., & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cognitive load: evidence from hypertext-based instruction. Educational Psychologist, 38(1), 33-41.
Hays, T. A. (1996). Spatial abilities and the effects of computer animation on short-term and long-term comprehension. Journal of educational computing research, 14(2), 139-155.
Hegarty, M., & Kriz, S. (2008). Effects of knowledge and spatial ability on learning from animation. Learning with animation: Research implications for design, 3-29
Hwang, G. J., & Chang, H. F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031.
Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive load theory on the design of learning. Learning and Instruction, 12(1), 1-10.
Klausmeier, H. J. (1992). Concept learning and concept teaching. Educational Psychologist, 27(3), 267-286.
Klausmeier, H. J., Ghatala, E. S., & Frayer, D. A. (1974). Conceptual learning and development: A cognitive view. Academic Press.
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago press.
Lanir, J., Booth, K. S., & Tang, A. (2008). MultiPresenter: A Presentation system for (very) large display surfaces. In Proceedings of the 16th ACM international conference on MultiMedia (pp. 519-528). New York, NY: ACM.
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education,79, 49-58.
Lee, I. J., Chen, C. H., & Chang, K. P. (2016). Augmented reality technology combined with three-dimensional holography to train the mental rotation ability of older adults. Computers in Human Behavior, 65, 488-500.
Lord, T. R. (1985). Enchancing the visual-spatial aptitude of students. Journal of Research in Science Teaching, 22, 395-406.
Lu, S. J., & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525-541.
Macnab, W., & Johnstone, A.H. (1990). Spatial skill which contribute to competence in the biological sciences. Journal of Biological Education, 24(1), 37-41.
MaGee, M. G. (1978). Effect of two problem solving strategies on mental rotation test scores. Journal of Psychology, 100, 83-85.
Mayer, R. E. (2009). Multimedia learning. Cambridge university press.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of educational psychology, 86(3), 389.
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11(4), 256.
Mayer, R. E., Mautone, P., & Prothero, W. (2002). Pictorial aids for learning by doing in a multimedia geology simulation game. Journal of Educational Psychology, 94(1), 171.
Merrill, M. D., Tennyson, R. D., & Posey, L. O. (1992). Teaching concepts: An instructional design guide. Educational Technology.
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81.
National Research Council (U.S.). (1996). National Science Education Standards: Observe, interact, change, learn. Washington, DC: National Academy Press.
Oakes, J. (1985). Keeping track: How schools structure inequality. New Haven, CT: Yale University Press.
Paas, F., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351-371.
Paas, F., Tuovinen, J. E., & Tabbers, H. (2003). Cognitive load measurement as a means to advance cognitive Load Theory. Educational Psychologist, 38(1), 63-71.
Pellegrino, J. W., & Kali, R. (1982). Process analysis of spatial aptitude. Advances in the psychology of human intelligence, 1, 311-365.
Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of research in science teaching, 2(3), 176-186.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211-227.
Roth, K. (1991). Reading science texts for conceptual change. Science learning: Processes and applications, 48-63.
Saleh, M., Lazonder, A. W., & De Jong, T. (2005). Effects of within-class ability grouping on social interaction, achievement, and motivation. Instructional Science, 33(2), 105-119. doi:10.1007/s11251-004-6405-z
Shelton, B. E., & Hedley, N. R. (2004). Exploring a cognitive basis for learning spatial relationships with augmented reality. Technology, Instruction, Cognition and Learning, 1(4), 323.
Soloway, E., Guzdial, M., and Hay, K E.(1994). Learner-centered design: the challenge for HCI in the 21st century. ACM Interactions, 1(2), 36-48.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational psychology review, 22(2), 123-138.
Sweller, J., van Merrienboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educatioanl Psychology Review, 10, 251-296.
Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly. Proceedings of the SIGCHI conference on Human factors in computing systems, 5(1), 73-80.
Thurstone L. L. (1938). Primary mental abilities. Chicago: University press.
Webb, N. M. (1982). Peer interaction and learning in cooperative small groups. Journal of Educational Psychology, 74(5), 642-655. doi:10.1037/0022-0663.74.5.642
Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors: The Journal of the Human Factors and Ergonomics Society, 35(2), 263-281.