簡易檢索 / 詳目顯示

研究生: 陳韋伶
Chen, Wei-Ling
論文名稱: 評估環境靈敏的小分子螢光探針做為偵測不同類澱粉蛋白纖維形成的可能
Environmentally Sensitive Fluorescent Probes for Detecting Different Amyloid Fibrils
指導教授: 杜玲嫻
Tu, Ling-Hsien
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 69
中文關鍵詞: 胰島類澱粉蛋白硫磺素T小分子螢光探針黃酮類化合物
英文關鍵詞: Islet amyloid polypeptide, Thioflavin T, fluorescence probe, flavone
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.073.2018.B05
論文種類: 學術論文
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多肽與蛋白質因錯誤摺疊而產生沉積物是許多疾病的共同病徵,例如:乙型類澱粉蛋白於腦內的沉積被認為與阿茲海默症有深的關聯性;胰島內的胰島類澱粉蛋白之沉積物被認為是第二型糖尿病的重要病徵之一,除了發展抑制蛋白聚集的藥物之外,偵測類澱粉蛋白纖維的生成是科學家致力研究的方向。目前普遍偵測類澱粉蛋白纖維生成與聚集的小分子為硫磺素T,但硫磺素T的通用性使其缺乏對特定類澱粉蛋白纖維的專一性以及會受到某些抑制小分子的影響而會有錯誤的訊號產生,因此於本研究中,我們利用對於環境靈敏度高的黃酮類化合物,在此命名為3-HF-ene-4’-OMe,作為偵測胰島類澱粉蛋白纖維的小分子螢光探針。從研究中我們確認3-HF-ene-4’-OMe對於胰島類澱粉蛋白纖維的反應性,以及透過結合親和力測試發現3-HF-ene-4’-OMe與胰島類澱粉蛋白纖維的結合力較硫磺素T高。而當3-HF-ene-4’-OMe分別與胰島類澱粉蛋白纖維及乙型類澱粉蛋白的蛋白纖維結合時,兩者的螢光波長明顯不同,表示3-HF-ene-4’-OMe與乙型類澱粉蛋白的蛋白纖維結合位置的環境不同於與胰島類澱粉蛋白纖維結合位置的環境。此外,我們利用3-HF-ene-4’-OMe來偵測胰島類澱粉蛋白聚集,聚集結果與硫磺素T偵測的結果一致。之後,再分別利用硫磺素T與3-HF-ene-4’-OMe偵測白藜蘆醇用於胰島類澱粉蛋白的抑制試驗。雖然兩者的螢光訊號在白藜蘆醇存在下皆有削弱的傾向,但由於3-HF-ene-4’-OMe與胰島類澱粉蛋白纖維的結合力較硫磺素T佳,因此在作為該抑制試驗中,3-HF-ene-4’-OMe是比較適合的探針,依舊可以觀察到蛋白質聚集過程。我們亦建議在類澱粉蛋白的抑制試驗應使用多個探針來提高實驗結果的可信度。

    Deposition of misfolded polypeptide and protein is a hallmark of many diseases. For example, amyloid β (Aβ) was found to deposit in the brain of Alzheimer's disease (AD). Islet amyloid polypeptide (IAPP) deposition is highly associated with type 2 diabetes. Many scientists devote their efforts in finding methods to detect the formation of amyloid fibrils and the location of their deposition. Thioflavin T (ThT) is generally used as a fluorescence probe to detect amyloid fibrils formation and aggregation, however, ThT can’t tell the difference among amyloid fibrils and sometimes the fluorescence intensity is quenched by some inhibitors used in aggregation studies. Here, we used an environmentally sensitive flavone-based fluorescent probe, 3-HF-ene-4’-OMe as an alternative fluorescent probe. In this study, we showed that 3-HF-ene-4’-OMe is specific for IAPP fibrils but not monomers, and the binding affinity of 3-HF-ene-4’-OMe to IAPP fibrils is higher than ThT. In additions, 3-HF-ene-4’-OMe exhibits different emission wavelength while binding to IAPP or Aβ fibrils indicating that the binding site polarity of Aβ is different from IAPP. Moreover, 3-HF-ene-4’-OMe shows better ability in monitoring IAPP aggregation in the presence of resveratrol, an IAPP inhibitor. Although 3-HF-ene-4’-OMe was somehow replaced by resveratrol, it is still more suitable than ThT in IAPP inhibition study due to it’s better binding affinity with IAPP fibrils. As a result, our results also pointed out the experimental importance of using multiple probes for amyloid inhibition studies.

    誌謝 i 摘要 ii 英文摘要 iii 目錄 iv 中英對照表 vii 圖索引 xi 第一章 緒論 1 1.1 前言 1 1.1.1 類澱粉蛋白的形成與所對應的疾病 1 1.1.2 寡聚物在疾病中扮演的角色 2 1.1.3 類澱粉蛋白的結構與生成機制 2 1.1.4 胰島類澱粉蛋白的生物合成 3 1.1.5 胰島類澱粉蛋白之結構以及與第二型糖尿病的關係 4 1.2 研究動機 5 1.2.1 用於偵測乙型類澱粉蛋白(amyloid β, Aβ)纖維的螢光小分子 7 1.2.2 用於偵測α-突觸核蛋白(α-synuclein)纖維的螢光小分子 10 1.2.3 用於偵測胰島素(insulin)纖維的螢光小分子 10 1.2.4 用於偵測胰島類澱粉蛋白(islet amyloid polypeptide, IAPP)纖維的方法 11 1.3 螢光分子的放光模式與機制 12 1.3.1 電荷轉移(charge transfer) 13 1.3.2 質子轉移(proton transfer) 14 1.3.3 構型變化(conformational change) 16 1.3.4 基態異構化(ground-state isomerization) 17 1.3.5 聚集(aggregation) 17 1.4 黃酮類衍生物與類澱粉蛋白的關係 18 1.4.1 黃酮類衍生物作為類澱粉蛋白的抑制劑 18 1.4.2 黃酮類衍生物作為類澱粉蛋白的螢光探針 20 第二章 實驗設備與程序 21 2.1 胜肽合成 21 2.2 胜肽純化 24 2.3 樣品準備 25 2.3.1 小分子螢光染劑準備 25 2.3.2 蛋白纖維的準備 26 2.4 IAPP蛋白纖維與硫磺素T和3-HF-ene-4’-OMe結合親和力測試 27 2.5 聚集試驗 28 2.5.1 用硫磺素T小分子偵測蛋白質聚集 28 2.5.2 以3-HF-ene-4’-OMe偵測蛋白質聚集 29 2.6 穿透式電子顯微鏡 29 2.7 化學物質與實驗儀器 29 第三章 結果與討論 31 3.1 蛋白質的合成與純化結果 31 3.2 3-HF 與其衍生物自身特性 36 3.3 3-HF與其衍生在加入IAPP蛋白纖維之後的螢光光譜 38 3.4 3-HF-ene-4’-OMe偵測蛋白纖維的專一性 40 3.5 比較硫磺素T和3-HF-ene-4’-OMe與IAPP蛋白纖維的結合親和力 41 3.6 利用3-HF-ene-4’-OMe監測IAPP聚集與用於抑制試驗 43 3.7 利用3-HF-ene-4’-OMe偵測Aβ42蛋白纖維 48 3.8 3-HF-ene-4’-OMe用於偵測其他類澱粉蛋白的結果 50 3.9 結論 59 第四章 參考資料 61

    1. Sipe, J. D., Amyloidosis. Crit. Rev. Clin. Lab. Sci. 1994, 31 (4), 325-54.
    2. Chiti, F.; Dobson, C. M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333-66.
    3. Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S.; Merlini, G.; Saraiva, M. J.; Westermark, P.; Nomenclature Committee of the International Society of, A., Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2012, 19 (4), 167-70.
    4. Koo, E. H.; Lansbury, P. T., Jr.; Kelly, J. W., Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. U S A 1999, 96 (18), 9989-90.
    5. Bellotti, V.; Chiti, F., Amyloidogenesis in its biological environment: challenging a fundamental issue in protein misfolding diseases. Curr. Opin. Struc. Biol. 2008, 18 (6), 771-9.
    6. Fandrich, M., Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J. Mol. Biol. 2012, 421 (4-5), 427-40.
    7. Heinitz, K.; Beck, M.; Schliebs, R.; Perez-Polo, J. R., Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J. Neurochem. 2006, 98 (6), 1930-45.
    8. Valincius, G.; Heinrich, F.; Budvytyte, R.; Vanderah, D. J.; McGillivray, D. J.; Sokolov, Y.; Hall, J. E.; Losche, M., Soluble amyloid beta-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys. J. 2008, 95 (10), 4845-61.
    9. Winner, B.; Jappelli, R.; Maji, S. K.; Desplats, P. A.; Boyer, L.; Aigner, S.; Hetzer, C.; Loher, T.; Vilar, M.; Campioni, S.; Tzitzilonis, C.; Soragni, A.; Jessberger, S.; Mira, H.; Consiglio, A.; Pham, E.; Masliah, E.; Gage, F. H.; Riek, R., In vivo demonstration that alpha-synuclein oligomers are toxic. Proc. Natl. Acad. Sci. U S A 2011, 108 (10), 4194-9.
    10. Ritzel, R. A.; Meier, J. J.; Lin, C. Y.; Veldhuis, J. D.; Butler, P. C., Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 2007, 56 (1), 65-71.
    11. Kajava, A. V.; Aebi, U.; Steven, A. C., The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J. Mol. Biol. 2005, 348 (2), 247-52.
    12. Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y., Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 2003, 278 (19), 16462-5.
    13. Puchtler, H.; Sweat, F., Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem. 1965, 13 (8), 693-4.
    14. Goldsbury, C.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Wall, J. S.; Aebi, U.; Muller, S. A., Amyloid structure and assembly: insights from scanning transmission electron microscopy. J. Struct. Biol. 2011, 173 (1), 1-13.
    15. Xue, W. F.; Homans, S. W.; Radford, S. E., Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. U S A 2008, 105 (26), 8926-31.
    16. Ferrone, F., Analysis of protein aggregation kinetics. Methods Enzymol 1999, 309, 256-74.
    17. Sanke, T.; Bell, G. I.; Sample, C.; Rubenstein, A. H.; Steiner, D. F., An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J. Biol. Chem. 1988, 263 (33), 17243-6.
    18. Marzban, L.; Soukhatcheva, G.; Verchere, C. B., Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in {beta}-cells. Endocrinology 2005, 146 (4), 1808-17.
    19. Badman, M. K.; Shennan, K. I.; Jermany, J. L.; Docherty, K.; Clark, A., Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett. 1996, 378 (3), 227-31.
    20. Marzban, L.; Trigo-Gonzalez, G.; Zhu, X.; Rhodes, C. J.; Halban, P. A.; Steiner, D. F.; Verchere, C. B., Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 2004, 53 (1), 141-8.
    21. Martinez, A.; Montuenga, L. M.; Springall, D. R.; Treston, A.; Cuttitta, F.; Polak, J. M., Immunocytochemical localization of peptidylglycine alpha-amidating monooxygenase enzymes (PAM) in human endocrine pancreas. J. Histochem. Cytochem. 1993, 41 (3), 375-80.
    22. Charge, S. B.; de Koning, E. J.; Clark, A., Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry 1995, 34 (44), 14588-93.
    23. Scherbaum, W. A., The role of amylin in the physiology of glycemic control. Exp. Clin. Endocrinol. Diabetes 1998, 106 (2), 97-102.
    24. Rushing, P. A.; Hagan, M. M.; Seeley, R. J.; Lutz, T. A.; D'Alessio, D. A.; Air, E. L.; Woods, S. C., Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 2001, 142 (11), 5035.
    25. Mosselman, S.; Hoppener, J. W.; Zandberg, J.; van Mansfeld, A. D.; Geurts van Kessel, A. H.; Lips, C. J.; Jansz, H. S., Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett. 1988, 239 (2), 227-32.
    26. Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R., Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 2007, 46 (47), 13505-22.
    27. Cooper, G. J.; Willis, A. C.; Clark, A.; Turner, R. C.; Sim, R. B.; Reid, K. B., Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. U S A 1987, 84 (23), 8628-32.
    28. Narita, R.; Toshimori, H.; Nakazato, M.; Kuribayashi, T.; Toshimori, T.; Kawabata, K.; Takahashi, K.; Masukura, S., Islet amyloid polypeptide (IAPP) and pancreatic islet amyloid deposition in diabetic and non-diabetic patients. Diabetes Res. Clin. Pract. 1992, 15 (1), 3-14.
    29. Lorenzo, A.; Razzaboni, B.; Weir, G. C.; Yankner, B. A., Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 1994, 368 (6473), 756-60.
    30. Kadir, A.; Marutle, A.; Gonzalez, D.; Scholl, M.; Almkvist, O.; Mousavi, M.; Mustafiz, T.; Darreh-Shori, T.; Nennesmo, I.; Nordberg, A., Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer's disease. Brain 2011, 134 (Pt 1), 301-17.
    31. Zhu, L.; Ploessl, K.; Kung, H. F., PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43 (19), 6683-91.
    32. Cui, M., Past and recent progress of molecular imaging probes for beta-amyloid plaques in the brain. Curr. Med. Chem. 2014, 21 (1), 82-112.
    33. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. 2010, 1804 (7), 1405-12.
    34. LeVine, H., 3rd, Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1-40) amyloid fibrils. Arch. Biochem. Biophys. 1997, 342 (2), 306-16.
    35. D'Amico, M.; Di Carlo, M. G.; Groenning, M.; Militello, V.; Vetri, V.; Leone, M., Thioflavin T Promotes Abeta(1-40) Amyloid Fibrils Formation. J. Phys. Chem. Lett. 2012, 3 (12), 1596-601.
    36. Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z., Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open. Sci. 2017, 4 (1), 160696.
    37. Tu, L. H.; Young, L. M.; Wong, A. G.; Ashcroft, A. E.; Radford, S. E.; Raleigh, D. P., Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 2015, 54 (3), 666-76.
    38. Al-Bunyan, M. A., Parkinson`s disease. Clinical and electrophysiology evaluation. Neurosciences (Riyadh) 2000, 5 (1), 46-9.
    39. Bieschke, J.; Russ, J.; Friedrich, R. P.; Ehrnhoefer, D. E.; Wobst, H.; Neugebauer, K.; Wanker, E. E., EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. U S A 2010, 107 (17), 7710-5.
    40. Su, D.; Teoh, C. L.; Wang, L.; Liu, X.; Chang, Y. T., Motion-induced change in emission (MICE) for developing fluorescent probes. Chem. Soc. Rev. 2017, 46 (16), 4833-4844.
    41. Yang, F.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M. R.; Ambegaokar, S. S.; Chen, P. P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M., Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280 (7), 5892-901.
    42. Garcia-Alloza, M.; Borrelli, L. A.; Rozkalne, A.; Hyman, B. T.; Bacskai, B. J., Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem. 2007, 102 (4), 1095-104.
    43. Ran, C.; Xu, X.; Raymond, S. B.; Ferrara, B. J.; Neal, K.; Bacskai, B. J.; Medarova, Z.; Moore, A., Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits. J. Am. Chem. Soc. 2009, 131 (42), 15257-61.
    44. Zhang, X.; Tian, Y.; Li, Z.; Tian, X.; Sun, H.; Liu, H.; Moore, A.; Ran, C., Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. J. Am. Chem. Soc. 2013, 135 (44), 16397-409.
    45. Cui, M.; Ono, M.; Watanabe, H.; Kimura, H.; Liu, B.; Saji, H., Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of beta-amyloid deposits. J. Am. Chem. Soc. 2014, 136 (9), 3388-94.
    46. Okamura, N.; Mori, M.; Furumoto, S.; Yoshikawa, T.; Harada, R.; Ito, S.; Fujikawa, Y.; Arai, H.; Yanai, K.; Kudo, Y., In vivo detection of amyloid plaques in the mouse brain using the near-infrared fluorescence probe THK-265. J. Alzheimers Dis. 2011, 23 (1), 37-48.
    47. Fu, H.; Cui, M.; Tu, P.; Pan, Z.; Liu, B., Evaluation of molecules based on the electron donor-acceptor architecture as near-infrared beta-amyloidal-targeting probes. Chem. Commun. (Camb) 2014, 50 (80), 11875-8.
    48. Tong, H.; Lou, K.; Wang, W., Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimers disease. Acta. Pharm. Sin. B 2015, 5 (1), 25-33.
    49. Zhou, K.; Fu, H.; Feng, L.; Cui, M.; Dai, J.; Liu, B., The synthesis and evaluation of near-infrared probes with barbituric acid acceptors for in vivo detection of amyloid plaques. Chem. Commun. (Camb) 2015, 51 (58), 11665-8.
    50. Watanabe, H.; Ono, M.; Ariyoshi, T.; Katayanagi, R.; Saji, H., Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of beta-Amyloid and alpha-Synuclein Aggregates. ACS. Chem. Neurosci. 2017, 8 (8), 1656-1662.
    51. Guan, Y.; Cao, K. J.; Cantlon, A.; Elbel, K.; Theodorakis, E. A.; Walsh, D. M.; Yang, J.; Shah, J. V., Real-Time Monitoring of Alzheimer's-Related Amyloid Aggregation via Probe Enhancement-Fluorescence Correlation Spectroscopy. ACS. Chem. Neurosci. 2015, 6 (9), 1503-8.
    52. Celej, M. S.; Caarls, W.; Demchenko, A. P.; Jovin, T. M., A triple-emission fluorescent probe reveals distinctive amyloid fibrillar polymorphism of wild-type alpha-synuclein and its familial Parkinson's disease mutants. Biochemistry 2009, 48 (31), 7465-72.
    53. Mora, A. K.; Singh, P. K.; Patro, B. S.; Nath, S., PicoGreen: a better amyloid probe than Thioflavin-T. Chem. Commun. (Camb) 2016, 52 (82), 12163-12166.
    54. Yoshimura, M.; Ono, M.; Watanabe, H.; Kimura, H.; Saji, H., Feasibility of amylin imaging in pancreatic islets with beta-amyloid imaging probes. Sci. Rep. 2014, 4, 6155.
    55. Wong, A. G.; Raleigh, D. P., The dye SYPRO orange binds to amylin amyloid fibrils but not pre-fibrillar intermediates. Protein. Sci. 2016, 25 (10), 1834-40.
    56. Klymchenko, A. S., Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc Chem Res 2017, 50 (2), 366-375.
    57. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103 (10), 3899-4032.
    58. Niko, Y.; Didier, P.; Mely, Y.; Konishi, G.; Klymchenko, A. S., Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci. Rep. 2016, 6, 18870.
    59. Demchenko, A. P.; Mely, Y.; Duportail, G.; Klymchenko, A. S., Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 2009, 96 (9), 3461-70.
    60. Klymchenko, A. S.; Demchenko, A. P., Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Physical Chemistry Chemical Physics 2003, 5 (3), 461-468.
    61. Haidekker, M. A.; Theodorakis, E. A., Molecular rotors--fluorescent biosensors for viscosity and flow. Org. Biomol. Chem. 2007, 5 (11), 1669-78.
    62. Kuimova, M. K.; Yahioglu, G.; Levitt, J. A.; Suhling, K., Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 2008, 130 (21), 6672-3.
    63. Walker, C. L.; Lukyanov, K. A.; Yampolsky, I. V.; Mishin, A. S.; Bommarius, A. S.; Duraj-Thatte, A. M.; Azizi, B.; Tolbert, L. M.; Solntsev, K. M., Fluorescence imaging using synthetic GFP chromophores. Curr. Opin. Chem. Biol. 2015, 27, 64-74.
    64. Lukinavicius, G.; Reymond, L.; Umezawa, K.; Sallin, O.; D'Este, E.; Gottfert, F.; Ta, H.; Hell, S. W.; Urano, Y.; Johnsson, K., Fluorogenic Probes for Multicolor Imaging in Living Cells. J. Am. Chem. Soc. 2016, 138 (30), 9365-8.
    65. Lukinavicius, G.; Umezawa, K.; Olivier, N.; Honigmann, A.; Yang, G.; Plass, T.; Mueller, V.; Reymond, L.; Correa, I. R., Jr.; Luo, Z. G.; Schultz, C.; Lemke, E. A.; Heppenstall, P.; Eggeling, C.; Manley, S.; Johnsson, K., A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 2013, 5 (2), 132-9.
    66. Wang, Y.; Zhang, Z.; Zhang, Y.; Yu, C., A real-time fluorescence assay for protease activity and inhibitor screening based on the aggregation-caused quenching of a perylene probe. Luminescence 2018, 33 (4), 790-796.
    67. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115 (21), 11718-940.
    68. Marsh, D. T.; Das, S.; Ridell, J.; Smid, S. D., Structure-activity relationships for flavone interactions with amyloid beta reveal a novel anti-aggregatory and neuroprotective effect of 2',3',4'-trihydroxyflavone (2-D08). Bioorg. Med. Chem. 2017, 25 (14), 3827-3834.
    69. Shimmyo, Y.; Kihara, T.; Akaike, A.; Niidome, T.; Sugimoto, H., Multifunction of myricetin on A beta: neuroprotection via a conformational change of A beta and reduction of A beta via the interference of secretases. J. Neurosci. Res. 2008, 86 (2), 368-77.
    70. Malisauskas, R.; Botyriute, A.; Cannon, J. G.; Smirnovas, V., Flavone derivatives as inhibitors of insulin amyloid-like fibril formation. PLoS One 2015, 10 (3), e0121231.
    71. Cheng, B.; Gong, H.; Li, X.; Sun, Y.; Zhang, X.; Chen, H.; Liu, X.; Zheng, L.; Huang, K., Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochem. Biophys. Res. Commun. 2012, 419 (3), 495-9.
    72. Ono, M.; Yoshida, N.; Ishibashi, K.; Haratake, M.; Arano, Y.; Mori, H.; Nakayama, M., Radioiodinated flavones for in vivo imaging of beta-amyloid plaques in the brain. J. Med. Chem. 2005, 48 (23), 7253-60.
    73. Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M., Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 1997, 275 (5297), 218-20.
    74. Bitan, G.; Kirkitadze, M. D.; Lomakin, A.; Vollers, S. S.; Benedek, G. B.; Teplow, D. B., Amyloid beta -protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. U S A 2003, 100 (1), 330-5.
    75. Gravina, S. A.; Ho, L.; Eckman, C. B.; Long, K. E.; Otvos, L., Jr.; Younkin, L. H.; Suzuki, N.; Younkin, S. G., Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J. Biol. Chem. 1995, 270 (13), 7013-6.
    76. Schmidt, M.; Sachse, C.; Richter, W.; Xu, C.; Fandrich, M.; Grigorieff, N., Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. U S A 2009, 106 (47), 19813-8.
    77. Sato, M.; Murakami, K.; Uno, M.; Nakagawa, Y.; Katayama, S.; Akagi, K.; Masuda, Y.; Takegoshi, K.; Irie, K., Site-specific inhibitory mechanism for amyloid beta42 aggregation by catechol-type flavonoids targeting the Lys residues. J. Biol. Chem. 2013, 288 (32), 23212-24.
    78. Atwood, C. S.; Scarpa, R. C.; Huang, X.; Moir, R. D.; Jones, W. D.; Fairlie, D. P.; Tanzi, R. E.; Bush, A. I., Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 2000, 75 (3), 1219-33.
    79. Borghesani, V.; Alies, B.; Hureau, C., Cu(II) binding to various forms of amyloid-beta peptides. Are they friends or foes? Eur. J. Inorg. Chem. 2018, 2018 (1), 7-15.
    80. Gao, H.; Wu, X., A 3-hydroxyflavone derivative as fluorescence chemosensor for copper and zinc ions. Chemistry of Heterocyclic Compounds 2018, 54 (2), 125-129.
    81. Austin, L. A.; Heath, H., 3rd, Calcitonin: physiology and pathophysiology. N. Engl. J. Med. 1981, 304 (5), 269-78.
    82. Zaidi, M.; Inzerillo, A. M.; Moonga, B. S.; Bevis, P. J.; Huang, C. L., Forty years of calcitonin--where are we now? A tribute to the work of Iain Macintyre, FRS. Bone 2002, 30 (5), 655-63.

    無法下載圖示 本全文未授權公開
    QR CODE