簡易檢索 / 詳目顯示

研究生: 林欣霓
Hsin-Ni Lin
論文名稱: 字詞辨識中個別差異之量度:個人詞彙行為之角色探究
Measuring Individual Differences in Visual Word Recognition: The Role of Individual Lexical Behaviors
指導教授: 謝舒凱
Hsieh, Shu-Kai
詹曉蕙
Chan, Shiao-Hui
學位類別: 碩士
Master
系所名稱: 英語學系
Department of English
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 117
中文關鍵詞: 個別差異字詞辨識詞彙行為自然語料混合效果模式
英文關鍵詞: individual differences, word recognition, lexical behaviors, naturalistic data, mixed-effects models
論文種類: 學術論文
相關次數: 點閱:175下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在以語料庫與計算語言學的研究方法,量測字詞辨識中受試者表現之個別差異。字詞辨識為心理語言學領域關注的議題,過去的研究 (Katz et al., in press; Lewellen, Goldinger, Pisoni, & Greene, 1993; Sears, Siakaluk, Chow, & Buchanan, 2008; Unsworth & Pexman, 2003; Yap, Balota, Sibley, & Ratcliff, 2012) 主要皆藉由測驗或問卷的方式,如詞彙測驗、詞彙熟悉度問卷,探討其中個別差異的來源;然而,這樣的研究方法,往往侷限於測驗可及的範疇,且受限於單一測驗包含的詞彙、分數、量尺等等。
    為了將研究範圍拓展至語言的實際使用面向上,本文從個人日常生活的詞彙行為 (lexical behaviors) 著手,提出「個人用詞之頻率指數」以及「個人詞頻」兩種變項的計量法;進而探討它們是否能解釋字詞辨識實驗中因受試者個人表現所造成的變異。研究經由四個步驟完成。第一,實施中文詞彙判斷作業 (lexical decision task),用以收集字詞辨識之實驗數據。第二,自動抽取各受試者的臉書貼文,並加以斷詞。第三,利用斷詞結果,來計算前述兩種詞彙行為變項之數值。「個人用詞之頻率指數」是依據個人所用之詞彙在中研院平衡語料庫中相對應的詞頻而計算。「個人詞頻」意指詞彙判斷的實驗刺激 (stimuli) 於個人臉書貼文中出現的頻率高低。第四,統計分析的部分,採用擅於估計個人差異的混合效果模式 (mixed-effects models)。
    實驗結果顯示,「個人詞頻」效果顯著,受試者對於自己使用頻率較高的詞彙,反應較快;「個人用詞之頻率指數」較低的受試者,與預期相反地,正確率較低。此外,作為量度個人詞彙行為的先驅研究,本文亦提供計算方法論上的建議,如下所列。與預期相反的頻率指數結果,可能源於計量時所參照的平衡語料庫是由書面資料所組成,建議未來類似的實驗,應參照口語語料庫中的詞頻。另外,經由我們的實驗測試,即使自動斷詞的結果包含許多錯誤,利用該結果所得的個人總詞數來正規化其詞頻數,仍具有可行性。最後,當使用與臉書貼文一樣的自然語料 (naturalistic data) 進行計量時,建議研究個人的詞彙偏好或習性,而非個人使用的每一字詞。

    This thesis aims to adopt a corpus-based computational linguistic approach to measure individual differences (IDs) in visual word recognition. Word recognition has been a cardinal issue in the field of psycholinguistics. Previous studies (Katz et al., in press; Lewellen, Goldinger, Pisoni, & Greene, 1993; Sears, Siakaluk, Chow, & Buchanan, 2008; Unsworth & Pexman, 2003; Yap, Balota, Sibley, & Ratcliff, 2012) examined the IDs by resorting to test-based or questionnaire-based measures (e.g. vocabulary tests and word familiarity questionnaires). Those measures, however, confined the research within the scope where they can evaluate, and also differentiated individuals within the boundary of limited scores, scales, or vocabularies.
    To extend the research to approximate to IDs in real life, the present study undertakes the issue from the observations of participants’ daily-life lexical behaviors. We proposed the methods to calculate "the frequency index of personal word usage" and "personal word frequency", and further investigated that whether each of them accounted for participants’ variances in word recognition. The investigation was carried out in four steps. First, a lexical decision task containing 912 Chinese stimuli was conducted so as to collect the data of visual word recognition. Second, each participant’s Facebook posts were automatically extracted and segmented into words. Third, based on those words, the two variables of individual lexical behaviors were computed. The frequency index per person was derived via his/her words’ corresponding frequencies in the Academia Sinica Balanced Corpus. The personal word frequency referred to the relative degrees to which a given word-recognition stimulus occurred in one’s Facebook posts. Fourth, experimental data were analyzed in mixed-effects models, which can precisely estimate by-subject differences.
    Results showed that the effects of personal word frequency reached significance; participants responded themselves more rapidly when encountering more frequently used words. People with lower frequency indices of personal word usage had a lower accuracy rates than others, which was contrary to our prediction. Besides, as a pioneer study of measuring lexical behaviors, this thesis also provides suggestions regarding the methodology, which are presented subsequently. The counter-prediction finding in the frequency index experiment was possibly attributed to that the Sinica Corpus mainly consists of written data; therefore, it is suggested that similar experiments in future research resort to the frequency counts in a spoken corpus. Additionally, according to our examination, a person’s total token number is feasible for normalizing his/her frequency counts even though word segmentation errors were contained within the tokens. Finally, when naturalistic data like the Facebook posts are utilized for the measurement, it is recommend basing the computation on personal preference or pattern of lexical usage, instead of on every single word in one’s language usage data.

    摘要 i Abstract iii Acknowledgements v Contents vii List of Tables ix List of Figures xi List of Abbreviations xii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Questions 4 1.3 Organization of the Thesis 5 Chapter 2 Literature Review 6 2.1 Individual Differences in Visual Word Recognition 6 2.2 The Correlation between Word Frequency and Word Difficulty 13 2.3 Corpus Resources 16 2.3.1 Chinese Lexicon Profile 17 2.3.2 i-Corpus (Individualized Corpora Project) 27 2.4 Mixed-effects Models 29 Chapter 3 Data Collection 33 3.1 Lexical Decision Task 33 3.1.1 Participants 33 3.1.2 Materials 34 3.1.3 Procedure 38 3.2 Facebook Data 40 Chapter 4 Experiments on the Individual Differences of Lexical Behaviors 46 4.1 Experiment 1: The Role of the Frequency Index of Personal Word Usage in Lexical Decision 46 4.1.1 Method 47 4.1.2 Results and Discussion 53 4.2 Experiment 2: The Role of Personal Word Frequency in Lexical Decision 63 4.2.1 Methods 64 4.2.2 Results and Discussion 72 Chapter 5 Conclusion 79 5.1 Summary of the Thesis 79 5.2 Contributions 83 5.3 Limitations and Future Work 85 References 87 Appendix A Background Sheet 94 Appendix B Word List 95 Appendix C Non-word List 108 Appendix D Instruction 115 Appendix E Examples of Low-frequency Words in the Sinica Corpus 116

    Andrews, S. (1989). Frequency and neighborhood effects on lexical access: Activation or search? Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(5), 802-814.
    Baayen, R. H. (2008). Analyzing linguistic data : A practical introduction to statistics using R. Cambridge: Cambridge University Press.
    Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412.
    Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3(2), 12-28.
    Balota, D. A., & Chumbley, J. I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. Journal of Experimental Psychology: Human Perception and Performance, 10, 340-357.
    Balota, D. A., & Chumbley, J. I. (1985). The locus of word frequency effects in the pronunciation task: Lexical access and/or production? Journal of Memory and Language, 24(1), 89-106.
    Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., . . . Treiman, R. (2007). The English Lexicon Project. Behavior Research Methods, 39(3), 445-459.
    Bever, T. G., Carrithers, C., Cowart, W., & Townsend, D. J. (1989). Language processing and familial handedness. In A. M. Galaburda (Ed.), From reading to neurons. Issues in the biology of language and cognition (pp. 331-357). Cambridge, MA, USA: MIT Press.
    Breland, H. M. (1996). Word frequency and word difficulty: A comparison of counts in four corpora. Psychological Science, 7(2), 96-99.
    Breland, H. M., Jones, R. J., & Jenkins, L. (1994). The College Board vocabulary study. New York: College Entrance Examination Board.
    Carroll, J. B., Davies, P., & Richman, B. (1971). The American Heritage word frequency book. New York: American Heritage Publishing Co.
    Chateau, D., & Jared, D. (2000). Exposure to print and word recognition processes. Memory & Cognition, 28(1), 143-153.
    Clark, H. H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12(4), 335-359.
    Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1979). Phonological encoding in the lexical decision task. Quarterly Journal of Experimental Psychology: Section A, 31(3), 489-507.
    Crawley, M. J. (2002). Statistical computing: An introdution to data analysis using S-plus. Chichester: Wiley.
    Dunn, L. M., & Dunn, D. M. (2007). Peabody picture vocabulary test (4th ed.). Minneapolis, MN: Pearson.
    Dupuy, H. (1974). The rationale, development, and standardization of a basic word vocabulary text. Washington DC: U.S. Government Printing Office.
    Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., . . . Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42(2), 488-496.
    Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12(6), 627-635.
    Forster, K. I., & Dickinson, R. G. (1976). More on the language-as-fixed-effect fallacy: Monte Carlo estimates of error rates for F1,F2,F', and min F'. Journal of Verbal Learning and Verbal Behavior, 15(2), 135-142.
    Gernsbacher, M. A. (1984). Resolving 20 years of inconsistent interactions between lexical familiarity and orthography, cconcreteness, and polysemy. Journal of Experimental Psychology: General, 113(2), 256-281.
    Graff, D., Chen, K., Kong, J., & Maeda, K. (2005). Chinese Gigaword second edition [CDROM]: Linguistic Data Consortium, PhiladelphiaCWN.
    Grainger, J. (1990). Word frequency and neighborhood frequency effects in lexical decision and naming. Journal of Memory and Language, 29(2), 228-244.
    Huang, C.-H., & Hsieh, S.-K. (2010). Infrastructure for cross-lingual knowledge representation ─ Towards multilingualism in linguistic studies. Taiwan NSC-granted Research Project (NSC 96-2411-H-003-061-MY3).
    Huang, H. W. (2003). Neighborhood size effect in the lexical decision of the Chinese two-character words. MA thesis, National Yang Ming University, Taipei.
    Jared, D., McRae, K., & Seidenberg, M. S. (1990). The basis of consistency effects in word naming. Journal of Memory and Language, 29(6), 685-715.
    Johns, B. T., & Jones, M. N. (2008). Predicting word-naming and lexical decision times from a semantic space model. Proceedings of the 30th Cognitive Science Society Meeting, 279-284.
    Katz, L., Brancazio, L., Irwin, J., Katz, S., Magnuson, J., & Whalen, D. (in press). What lexical decision and naming tell us about reading. Reading and Writing.
    Kucera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.
    Lewellen, M. J., Goldinger, S. D., Pisoni, D. B., & Greene, B. G. (1993). Lexical familiarity and processing efficiency: Individual differences in naming, lexical decision, and semantic categorization. Journal of Experimental Psychology: General, 122(3), 316-330.
    Mei, J.-J., Zhu, Y.-M., Gao, Y.-Q., & Yin, H.-X. (Eds.). (1983). Tongyici Cilin (同義詞詞林). Shanghai: Shanghai Lexicographical Press.
    Moscoso del Prado, F. (Ed.). (2008). A fully analytical model of the lexical decision task Austin, TX: Cognitive Science Society.
    Nelson, M. J., & Denny, E. C. (1960). The Nelson-Denny reading test. Boston: Houghton Miffilin.
    New, B., Ferrand, L., Pallier, C., & Brysbaert, M. (2006). Reexamining word length effects in visual word recognition: New evidence from the English Lexicon Project. Psychonomic Bulletin & Review, 13, 45-52.
    Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
    Parkin, A. J. (1982). Phonological recoding in lexical decision: Effects of spelling-to-sound regularity depend on how regularity is defined. Memory & Cognition, 10(1), 43-53.
    Parkin, A. J., & Ellingham, R. (1983). Phonological recoding in lexical decision: The influence of pseudohomophones. Language and Speech, 26(1), 81-90.
    Parkin, A. J., & Underwood, G. (1983). Orthographic vs. phonological irregularity in lexical decision. Memory&Cognition, 11(4), 351-355.
    Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. (1999). How to deal with “the language-as-fixed-effect fallacy”: Common misconceptions and alternative solutions. Journal of Memory and Language, 41(3), 416-426.
    Schilling, H., Rayner, K., & Chumbley, J. (1998). Comparing naming, lexical decision, and eye fixation times: Word frequency effects and individual differences. Memory & Cognition, 26(6), 1270-1281.
    Sears, C., Siakaluk, P., Chow, V., & Buchanan, L. (2008). Is there an effect of print exposure on the word frequency effect and the neighborhood size effect? Journal of Psycholinguistic Research, 37(4), 269-291.
    Shipley, W. C. (1940). A self-administering scale for measuring intellectual impairment and deterioration. The Journal of Psychology, 9, 371-377.
    Smith, J. (2009). As more asian developers build for Facebook, regional usage patterns change. Retrieved from Inside Facebook website: http://www.insidefacebook.com
    Stanovich, K. E., & Bauer, D. W. (1978). Experiments on the spelling-to-sound regularity effect in word recognition. Memory & Cognition, 6(4), 410-415.
    Thorndike, E. L., & Lorge, I. (1944). The teacher's word book of 30,000 words. New York: Bureau of Publications, Teachers College. Columbia University.
    Tsai, J.-L., Lee, C.-Y., Lin, Y.-C., Tzeng, O. J. L., & Hung, D. L. (2006). Neighborhood size effects of Chinese words in lexical decision and reading. Language and Linguistics, 7(3), 659-675.
    Tweedie, F. J., & Baayen, R. H. (1998). How variable may a constant be? Measures of lexical richness in perspective. Computers and the Humanities, 32, 323-352.
    Unsworth, S. J., & Pexman, P. M. (2003). The impact of reader skill on phonological processing in visual word recognition. Quarterly Journal of Experimental Psychology, 56A(1), 63-81.
    Wechsler, D. (1999). Manual for the Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.
    Whaley, C. P. (1978). Word—nonword classification time. Journal of Verbal Learning and Verbal Behavior, 17(2), 143-154.
    Woodcock, R. W., Mather, N., & Schrank, F. A. (2004). Woodcock-Johnson III diagnostic reading battery. Itasca, IL: Riverside Publishing.
    Yap, M. J., Balota, D. A., Sibley, D. E., & Ratcliff, R. (2012). Individual differences in visual word recognition: Insights from the English Lexicon Project. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 53-79.

    下載圖示
    QR CODE