研究生: |
劉珮琪 Liu, Pei-Chi |
---|---|
論文名稱: |
紅外線 QR Code 技術應用於 NFT 之研究 Infrared Watermark for Graphic QR Code Applied to NFT |
指導教授: |
王希俊
Wang, Hsi-Chun |
口試委員: |
周遵儒
Chou, Tzren-Ru 吳文和 Wu, Wen-Ho 王希俊 Wang, Hsi-Chun |
口試日期: | 2024/01/09 |
學位類別: |
碩士 Master |
系所名稱: |
圖文傳播學系碩士在職專班 Department of Graphic Arts and Communications_Continuing Education Master's Program of Graphic Arts and Communications |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 非同質化貨幣 、紅外線QR Code 、圖像化二維條碼 、容錯等級 |
英文關鍵詞: | Non-fungible tokens (NFT), infrared QR code, graphic QR Code, tolerance level |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400315 |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維條碼常用於行動支付、商品連結及資訊儲存,最廣為人知的二維條碼為QR Code(Quick Response Code),受到市場美學行銷及保護個人重要資訊的意識興起,QR Code外觀美化及安全防偽所帶來的附加價值逐漸受到重視。
加密貨幣與非同質化貨幣(Non-fungible token,NFT)風靡全球,此類型線上貨幣皆需要使用加密錢包來儲存資產,若要與實體商品相互結合,大多是將加密錢包私鑰或助記詞列印下來或是製成二維條碼。因此本研究利用C(Cyan,青色)、M(Magenta,洋紅色)、Y(Yellow,黃色)在紅外線光源下會呈透明狀來製作外顯圖像化 QR Code,將外顯的QR Code與NFT圖像做結合,達到美化QR Code的效果。並將加密錢包中的助記詞以紅外線QR Code技術藏入NFT外顯QR Code當中,利用K(Black)中的碳黑油墨會吸收紅外光的特性,可以在紅外線光源下顯現影像之原理製作內藏之助記詞QR Code,以提升其防偽安全之特性。
本研究針對字元數100之資訊量,選擇三種版本之QR Code,分別為第四版(33×33)容錯等級L(7%)、第六版(41×41)容錯等級Q(25%)以及第八版(49×49)容錯等級H(30%)。擷取紅外線下的影像後,使用Matlab程式將其影像強化,再利用資訊點識別程式進行錯誤率分析,找出適用於紅外線下之QR Code版本與容錯等級搭配方式。結果顯示使用Matlab影像強化能夠大幅度降低錯誤率,且相同尺寸下QR Code版本越小Module錯誤率越低。而本研究最小版本第四版(33×33)Codeword錯誤率僅8%,但其容錯等級為L(7%),難以被正確識別讀取內容,因此在實用上第六版較適合藏入紅外線圖像化QR Code。本研究提出之方法除了有效降低紅外線QR Code的Module錯誤率及Codeword錯誤率外,亦能找出適用藏入紅外線圖像化QR Code之版本及容錯等級,讓使用者在離線儲存錢包助記詞的同時,兼具防偽安全的特性及精準讀取的方便性。
Two-dimensional barcodes are widely utilized for various applications, including mobile payments, product linking, and information storage, with the QR Code (Quick Response code) standing out as the most recognized. As the awareness of market aesthetics, marketing strategies, and the protection of personal information continues to grow, there is an increasing emphasis on enhancing the visual appeal and security features of QR Codes.
The global surge in popularity of cryptocurrencies and non-fungible tokens (NFTs) has made encrypted wallets essential for secure asset storage. When these digital currencies integrate with physical goods, it is customary to print or generate visually appealing QR Codes containing the private key or mnemonic of the crypto wallet. Consequently, this study aims to capitalize on the transparency of Cyan (C), Magenta (M), and Yellow (Y) under infrared light to create visually enhanced QR Codes. These aesthetically pleasing QR Codes are then merged with NFT images, elevating the overall visual appeal. Additionally, the study involves concealing mnemonic QR Codes within the visual QR Codes using infrared technology. This takes advantage of the properties of Carbon Black ink in the Key (Black) component, which absorbs infrared light and reveals the embedded mnemonic. Such an approach enhances both the security and anti-counterfeiting features.
For an information content of 100 characters, the study selects three QR Code versions: version 4 (33×33) with an error correction level of L (7%), version 6 (41×41) with an error correction level of Q (25%), and version 8 (49×49) with an error correction level of H (30%). Following the capture of infrared images, Matlab is employed to enhance them. Subsequently, error rate analysis is performed using information point recognition programs to determine the optimal QR Code version and error correction level for infrared applications. The results indicate that Matlab image enhancement significantly reduces error rates, with smaller Module sizes leading to lower error rates. However, the smallest version 4 (33×33) has an error rate of 8% with an error correction level of L (7%), making it challenging to be correctly identified. Therefore, for practical use, version 6 is deemed more suitable for embedding in infrared QR Code.
The proposed method not only effectively reduces Module and Codeword error rates in infrared QR Codes but also identifies the suitable version and error correction level for embedding. This provides users with both anti-counterfeiting security and convenient offline storage of wallet mnemonics.
一、英文文獻:
Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., ... & Peacock, A. (2019). Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renewable and Sustainable Energy Reviews, 100, 143-174.
https://doi.org/10.1016/j.rser.2018.10.014
Chu, H., Chang, C., Lee, R., & Mitra, N. J. (2013). Halftone QR codes. ACM Transactions on Graphics (TOG), 32, 1-8.
Fu, M. S., & Au, O. C. (2002). Data hiding watermarking for halftone images. IEEE Transactions on Image Processing, 11(4), 477-484.
Fauzi, M. A., & Paiman, N. (2020). Bitcoin and Cryptocurrency: Challenges, Opportunities and future works. Journal of Asian Finance Economics and Business, 7(8), 695-704.
https://doi.org/10.13106/jafeb.2020.vol7.no8.695
Garateguy, G. J., Arce, G. R., Lau, D. L., & Villarreal, O. P. (2014). QR images: optimized image embedding in QR Codes. IEEE Transactions on Image Processing, 23(7), 2842-2853.
Hashemi, M., Nishikawa, Y., & Dandapani, K. (2020). Announcement effects in the cryptocurrency market. Applied Economics, 52(44), 4794-4808.
ISO/IEC 18004. (2006). Information technology – Automatic identification and data capture techniques – QR Code 2005 bar code symbology specification. (2nd ed.).
Kugler, L. (2021). Non-Fungible tokens and the future of art. Communications of the ACM, 64(9), 19-20.
https://doi.org/10.1145/3474355
Lin, Y.-H., Chang, Y.-P. & Wu, J.-L. (2013). Appearance-based QR code beautifier. IEEE Transactions on Multimedia, 15(8), 2198-2207.
Monrat, A. A., Schelén, O., & Andersson, K. J. I. A. (2019). A survey of blockchain from the perspectives of applications, challenges, and opportunities. IEEE Access,7, 117134-117151.
Pap, K., Žiljak, I., Žiljak-Vujić, J. (2010). Image reproduction for near infrared spectrum and the infraredesign theory. Journal of Imaging Science and Technology, 54(1), 10502-10501.
Pieters, G. C., & Vivanco, S. (2017). Financial regulations and price inconsistencies across Bitcoin markets. Information Economics and Policy, 39, 1-14.
https://doi.org/10.1016/j.infoecopol.2017.02.002
Rogalski, A., & Chrzanowski, K. (2014). Infrared devices and techniques. Metrology and Measurement Systems, 21(4) 10(2), 111-136.
Rudolf, M., Stanić Loknar, N., & Žiljak Stanimirović, I. (2015). Infrared steganography with individual screening shapes applied to postage stamps with security features. Tehnički vjesnik, 22(4), 939-945.
Suratkar, S., Shirole, M., & Bhirud, S. G. (2020). Cryptocurrency wallet: A review. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), 1-7.
Santhi, K., & Banu, R. W. (2015). Adaptive contrast enhancement using modified histogram equalization. Optik-International Journal for Light and Electron Optics, 126(19), 1809-1814.
van Slooten, J. (2022). Predictive value of tweet sentiment and volume on the bored ape yacht club's trading volume and price: A time-series analysis .Master's thesis. Rotterdam School of Management, Erasmus University.
Wang, Q., Li, R., Wang, Q., & Chen, S. (2021). Non-fungible token (NFT): Overview, evaluation, opportunities and challenges.
https://doi.org/10.48550/arXiv.2105.07447
Wang, Y.-M, Sun, C.-T, Kuan, P.-C, Lu, C.-S, & Wang, H.-C. (2018). Secured graphic QR code with infrared watermark. 2018 IEEE International Conference on Applied System Invention (ICASI), 690-693.
二、中文文獻:
王育梅(2018)。以紅外線浮水印技術於圖像化二維條碼中隱藏訊息之研究。國立臺灣師範大學,台北市。
朱宏國(2016)。人也看得懂的QR碼。科學發展,522,62-66。
吳宛瑜(2022)。「看進」畫作中隱藏的訊息不同光波段掃描的妙用。科學月刊,629。
康皓鈞(2010)。行動二維條碼在台灣的接受因素與發展應用之研究。國立政治大學,台北市。
管珮君(2018)。以半色調技術隱藏兩個二維條碼及品牌保護應用之研究。國立臺灣師範大學,台北市。
黎穎蓉(2022)。視覺化二維碼結合NFT郵票的虛實整合應用研究。國立臺灣師範大學,台北市。
劉文心(2010)。以紅外線浮水印為基礎之擴增實境創新研究。國立臺灣師範大學,台北市。
盧詩雲(2014)。UV 噴墨印刷網點製作紅外線浮水印— 以應用於 PET 之個人化產品為例。國立臺灣師範大學,台北市。
蘇育平(2017)。紅外線浮水印於數位印刷品之應用—以陳澄波〈嘉義公園一景〉為例。國立臺灣師範大學,台北市。
三、英文網路資料:
Mecalux. (2021). QR Codes in logistics: speed and flexibility. https://www.interlakemecalux.com/blog/qr-codes-logistics
Denso wave incorporated. (2022). Information capacity and versions of the QR Code. https://www.qrcode.com/en/about/version.html
Sotheby's. (2021). Sealed Cryptopunks: five punks on paper. https://www.sothebys.com/en/digital-catalogues/sealed-cryptopunks-five-punks-on-paper
四、 中文網路資料:
Andy(2014)。條碼的種類types of barcode。取自http://www.appsbarcode.com/barcode-type.php
趙志瀚(2021)。8-bit JPG頭像創HK$9,170萬天價,NFT數碼藝術印刷成紙實體拍賣。取自 https://hk.thevalue.com/articles/nft-digital-art-auction-sothebys-cryptopunk-on-papers