簡易檢索 / 詳目顯示

研究生: 邱湙竣
Yi Jun Chiu
論文名稱: 介電陶瓷材料之拉曼光譜研究
RAMAN SPECTROSCOPIC STUDY OF DIELECTRIC CERAMIC MATERIALS
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 86
中文關鍵詞: 拉曼
英文關鍵詞: Raman, Pyrochlore, Pervoskite
論文種類: 學術論文
相關次數: 點閱:219下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中利用拉曼光譜,來量測微觀狀態下 perovskite structure 和cubic pyrochlore structure的微波介電陶瓷材料結構性質與其微波性質之關連性。本文主要討論的 perovskite 陶瓷材料的是ABO3中之1:1結構,也就是 A(B’1/2B”1/2)O3和 A2B2O6O’的cubic pyrochlore 陶瓷材料是以bismuth、zinc和 niobium三種離子為主其中主要探討的部份包含: Qxf 值與氧八面體結構之關係,以及微波介電係數是否受到陶瓷perovskite材料中陰陽離子間距的影響。
    我們利用兩組樣品來探討上述的微波特性與晶體結構的相關性。第一組樣品是改變A晶體位置的樣品。利用這一個系列的樣品來說明A位置取代對微波介電參數的影響。
    第一組樣品為xCaSc1/2Nb1/2O3 + Ba(1-x) Sc1/2Nb1/2O3 ,這組樣品是針對改變A位置的離子,探討結構與微波關連性。我們發現第一組樣品中,圍繞在A位置周圍的O離子所形成的氧八面體結構對於Qxf值有極強烈相關性,而Ca離子大小以及極化率與O離子的距離對於介電係數之也有影響。當x增加時,即Ca離子在A位置上的含量越來越多時,氧八面體會越趨於鬆散,也就是Ca離子距O離子的距離越來越大,同時介電係數也有此趨勢,由此我們可以證明介電係數確實與陰陽離子的間距相關。
    第二組樣品是一系列cubic pyrochlore structure樣品,他們分別為是減少Bi離子及O離子的Bi1.5-xZn1.0Nb1.5O7-1.5x、減少Zn離子及O離子Bi1.5Zn1.0-xNb1.5O7-x、減少Nb離子及O離子Bi1.5Zn1.0Nb1.5-xO7-2.5x、由Ta離子取代Nb離子的Bi1.5Zn0.5Nb1.5-xTaxO7以及由Ti離子取代Zn和Nb離子的(Bi1.5Zn0.5)(Zn0.5-x/3TixNb1.5-2x/3)O7共五組樣品的結果可看出,可以看出在低頻區域有個exponential 的背景隨著濃度下降而變弱,由此可以求出在哪些特徵溫度的時候exponential 的背景才會有強烈的影響。此外發現B位置周圍的O離子所形成的氧八面體結構對於tanδ值有極強烈相關性,同時介電係數也有也會應此有所改變,由此我們可以證明介電係數確實與陰陽離子的間距相關。

    In this thesis, we adopted the Raman scattering techniques to detect the micro-structure of a series of perovskite and cubic pyrochlore microwave materials the correlation with microwave dielectric properties were also investigated. The size of oxygen-octahedrons in perovskite ceramics can be revealed by these measurements, and can be directly correlated with the microwave dielectric properties.
    The Raman measurements of xCaSc1/2Nb1/2O3 + Ba(1-x) Sc1/2Nb1/2O3 with calcium and barium ions as A sites ions revealed the structural properties of the oxygen-octahedrons. The rigid oxygen-octahedrons give the loose oxygen bonds with the increasing concentration of the calcium ions because the radius of calcium is smaller than barium. In addition, the distance between cations and anions is enlarged with the increasing concentration of calcium ions.
    There are five series samples in this thesis. They are Bi1.5-xZn1.0Nb1.5O7-1.5x, Bi1.5Zn1.0-xNb1.5O7-x, Bi1.5Zn1.0Nb1.5-xO7-2.5x, Bi1.5Zn0.5Nb1.5-xTaxO7, and (Bi1.5Zn0.5)(Zn0.5-x/3TixNb1.5-2x/3)O7. The Raman measurement of cubic pyrochlore structure exhits exponential background is getting stronger with the increasing temperature. In this way, we can find the critical temperature. In addition, we also find the characteristic of the rigid oxygen-octahedrons is well-defined to the correlation of the dielectric properties.

    Content 中文摘要 3 Abstract 4 Chapter 1 Introduction 1.1 Introduction to studies of dielectric mechanism 6 1.2 Dielectric polarization mechanisms in different frequency region 9 1.3 Microwave Dielectric Materials 12 1.3.1 Dielectric Constant and Quality Value 15 1.4 Raman Effect 17 1.5 X-Ray Diffraction 20 1.6 LTCC Materials 21 1.7 References 23 Chapter 2 Study of the CaxSc1/2Nb1/2O3 + Ba(1-x)Sc1/2Nb1/2O3 1:1 ordered-structure 28 2.1 Crystal structure of BaSc1/2Nb1/2O3 1:1 order-perovskite 30 2.2 Phonon modes in Raman spectra 31 2.3 Correlation between microwave dielectric properties and phonons 36 2.4 X-ray diffraction analysis 40 2.5 Summay 41 2.6 References 42 Chapter 3 Study of Bi1.5Zn1.0Nb1.5O7 Cubic Pyrochlore Structure 44 3.1 Crystal structure of Bi1.5Zn1.0Nb1.5O7 cubic pyrochlore structure 45 3.2 Phonon modes in Raman spectra 48 3.3 Low temperature Raman measurement 53 3.4 Correlation between microwave dielectric properties and phonons 62 3.5 Summary 84 3.6 References 85 Chapter 4 Conclusions 86

    . B. Meng, B. D. B. Klein, J. H. Booske and R. F. Cooper, “Microwave absorption in insulating dielectric ionic crystals including the role of point defects”, Phys. Rev. B 53(19), 12777—12785 (1996).
    2. Y. Kim, J. Oh, T.-G. Kim and B. Park, “Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films”, Appl. Phys. Lett. 78(16), 2363—2365 (2001).
    3. I. Webman, J. Jortner and M. H. Cohen, “Theory of optical and microwave properties of microscopically inhomogeneous materials”, Phys. Rev. B 15, 5712—5723 (1977).
    4. M. P. McNeal, S.-J. Jang and R. E. Newnham, “The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3)”, J. Appl. Phys. 83(6), 3288—3297 (1998).
    5. L. J. Sinnamon, J. McAneney, R. M. Bowman and J. M. Gregg, “Dependence of the interfacial on measurement regime used for investigation of thin ferroelectric capacitors”, J. Appl. Phys. 93(1), 736—744 (2003).
    6. E. Cockayne and B. P. Burton, “Phonons and static dielectric constant in CaTiO3 from first principles”, Phys. Rev. B 62, 3735—3743 (2000).
    7. J. Petzelt, S. Kamba, G. V. Kozlov and A. A. Volkov, “Dielectric properties of microwave ceramics investigated by infrared and submillimeter spectroscopy”, Ferroelectrics 176, 145—165 (1996).
    8. J. Petzelt, S. Pačesová, J. Fousek, S. Kamba, V. Železný, V. Koukal, J. Schwarzbach, B. P.Gorshunov, G. V. Kozlov and A. A. Volkov, “Dielectric spectra of some ceramics for microwave applications in the range of 1010—1014 Hz”, Ferroelectrics 93, 77—85 (1989).
    9. J. Petzelt and N. Setter, “Far infrared spectroscopy and origin of microwave losses in low-loss ceramics”, Ferroelectrics 150, 89—102 (1993).
    10. S. Kamba, V. Bovtun, J, Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas and M. Kosec, “Dielectric dispersion of the relaxor PLZT ceramics in the frequency range 20 Hz—100 THz”, J. Phys.: Condens. Matter 12, 497—519 (2000).
    11. K. Wakamura and T. Arai, “Empirical relationship between effective ionic charges and optical dielectric constants in binary and ternary cubic compounds”, Phys. Rev. B 24, 7371—7379 (1981).
    12. R. Zurmühlen, E. Colla, D. C. Dube, J. Petzelt, I. Reaney, A. Bell and N. Setter, “Structure of Ba(Y+3 1/2Ta+5 1/2)O3 and its dielectric properties in the range 102—1014 Hz, 20—600 K”, J. Appl. Phys. 76(10), 5864—5873 (1994).
    13. I. Gregora, J. Petzelt, J. Pokorný, V. Vorlíček, Z. Zikmund, R. Zurmühlen and N. Setter, “Raman spectroscopy of the zone centre improper ferroelastic transition in ordered Ba(Y1/2Ta1/2)O3 complex perovskite ceramic”, Solid State Commun. 94, 899—903 (1995).
    14. I. M. Reaney, J. Petzelt, V. V. Voltsekhovskii, F. Chu and N. Setter, “B-site order and infrared reflectivity in A(B´B˝)O3 complex perovskite ceramics”, J. Appl. Phys. 76(4), 2086—2092 (1994).
    15. W. G. Spitzer, R. C. Miller, D. A. Kleinman and L. E. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710—1721 (1962).
    16. K. Wakino, M. Murata and H. Tamura, “Far infrared reflection spectra of Ba(Zn,Ta)O3-BaZrO3 dielectric resonator material”, J. Am. Ceram. Soc. 69(1), 34—37 (1986).
    17. S. Kamba, G. Schaack and J. Petzelt, “Vibrational spectroscopy and soft-mode behavior in Rochelle salt”, Phys. Rev. B 51(21), 14998—15007 (1995).
    18. P. Zurmühlen, J. Petzelt, S. Kamba, V. V. Voltsekhovskii, E. Colla and N. Setter, “Dielectric spectroscopy of Ba(B΄ 1/2B˝ 1/2)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties”, J. Appl. Phys. 77(10), 5341—5350 (1995).
    19. A. K. Tagantsev, J. Petzelt and N. Setter, “Relation between intrinsic microwave and submillimeter losses and permittivity in dielectrics”, Solid State Commun. 87, 1117—1120 (1993).
    20. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, P. Vanĕk, P. Kužel, I. N. Jawahar, M. T. Sebastian and P. Mohanan, “High frequency dielectric properties of A5B4O15 microwave ceramics”, J. Appl. Phys. 89(7), 3900—3906 (2001).
    21. Y. Hu and C.-L.Huang, “Structure and dielectric properties of bismuth-based dielectric ceramics”, Mater. Chem. Phys. 72, 60—65 (2001).
    22. V. M. Ferreira, J. L. Baptista, J. Petzelt, G. A. Komandin and V. V. Voitsekhovskii, “Loss spectra of pure and La-doped MgTiO3 microwave ceramics”, J. Mater. Res. 10, 2301—2305 (1995).
    23. J. Petzelt, E. Buixaderas, G. Komandin, A. V. Pronin, M. Valant and D. Suvorov, “Infrared dielectric response of the La2/3TiO3-LaAlO3 microwave ceramics system”, Mater. Sci. Eng. B57, 40—45 (1998).
    24. J. Petzelt, E. Buixaderas and A. V. Pronin, “Infrared dielectric response of ordered and disordered ferroelectric Pb(Sc1/2Ta1/2)O3 ceramics”, Mater. Sci. Eng. B55, 86—94 (1998).
    25. J. Petzelt, S. Kamba and I. Gregora, “Infrared and raman spectroscopy of ill-ordered crystals”, Phase Transitions 63, 107—145 (1997).
    26. P. Zurmühlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorahunov, D. Dube and N. Setter, “Dielectric spectroscopy of Ba(B΄ 1/2B˝ 1/2)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (102—1012 Hz)”, J. Appl. Phys. 77(10), 5351—5364 (1995).
    27. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, “Infrared Near-Field Imaging of Implanted Semiconductors: Evidence of A Pure Dielectric Contrast”, Appl. Phys. Lett. 71, 575—577 (1997).
    28. Y. Lu, T. Wei, F. Duewer, Y. Lu, N. B. Ming, P. G. Schultz, and X. D. Xiang, “High Spatial Resolution Quantitative Microwave Impedance Microscopy by A scanning Tip Microwave Near-Field Microscope” Science, 276, 2004—2006, (1997).
    29. G. Chen, T. Wei, F. Duewer, Y. Lu, and X. D. Xiang, “High Spatial Resolution Quantitative Microwave Impedance Microscopy By A Scanning Tip Microwave Near-Field Microscope.” Appl. Phys. Lett. 71, 1872—1874 (1997).
    30. C. Gao, F. Duewer, and X. D. Xiang, “Quantitative Microwave Evanscent Microscopy.” Appl. Phys. Lett. 75, 3005—3007 (1999).
    31. T. Wei, X. D. Xiang, W. G. Wallace-Freedman and P. G. Schultz, “Scanning Tip Microwave Near-Field Microscope”, App. Phys. Lett. 68, 3506—3508 (1996).
    32. I. Takeuchi, T. Wei, F. Duewer, Y. K. Yoo, X. D. Xiang, V. Talyansky, S. P. Pai, G. J. Chen, and T. Venkatesan, “Low Temperature Scanning-Tip Microwave Near-Field Microscopy of YBCO Films”, Appl. Phys. Lett. 71, 2026—2028 (1997).
    33. H. Chang, C. Gao, I. Takeuchi, Y. yoo, J. Wang, P. G. Schultz, X. D. Wang, R. P. Sharama, M. Downes, and T. Venkatesan, “Combinatorial Synthesis and High Throughput Evaluation of Ferroelectric/Dielectric Thin-Film Libraries for Microwave Applications” Appl. Phys. Lett. 72, 2185—2187 (1998).
    34. C. Gao, F. Duewer, Y. Lu, and X. D. Xiang, “Quantitative Nonlinear Dielectric Microscopy of Periodically Polarized Ferroelectric Domains” Appl. Phys. Lett. 73, 1146—1148 (1998).
    35. F. Duewer, C. Gao, and X. D. Xiang, “Tip-Sample Distance Feedback Control in A Scanning Evanescent Microwave Probe for Nonlinear Dielectric Imaging” Rev. Sci. Ins. 71, 2414—2417 (2000).
    36. C. Gao and X. D. Xiang, Quantitative Microwave Near-Field Microscopy of Dielectric Properties. Rev. Sci. Ins. 69, 3846—3851 (1998).
    37. A. V. Hipple, Dielectrics and waves, 2nd ed., Atrech House, London, 1-86 (1996).
    38. G. Burns, Solid state physics, Academic press, Florida, 450-486(1985).
    39. E. Schlömann, “Dielectric Losses in Ionic Crystals with Disordered Charge Distributions,” Phys. Rev. 135, A413(1964).
    40. J. J. D. Jackson,” Classical Electrodynamic,” John Wiley & Sons, Inc, Thir Edition.
    41. R. U. , “Microwave Dielectric Resonators”, MAT 203 Introduction to Functional Material.
    42. Donhang Liu and Xi Yao, “Phase Structure and Dielectric Properties of Bi2O3-ZnO-Nb2O5 based Dielectric Ceramics”, J. Am. Ceram. Soc. 76(8), 2129 (1974).
    43. M. F. Yan, and H. C Ling, “Low Sintering Temperature, High Dielectric Constant and Small Temperature Coefficient Dielectric Compositions”, Mater. Chem. Phys., 44, 37 (1996).
    44. Hsiu-Fung Cheng, Yi-Chun Chen, Luu-Gen Hwa, Petr Kužel, Jan Petzelt, and I-Nan Lin, “Full Spectrum Dielectric Response of Bi2(Zn1/3Nb2/3)2O7 Thin Films in Terahertz, Infrared and Optical Frequency Regions”, Mater. Chem. Phys. 79, 161—163 (2003).
    45. Hsiu-Fung Cheng, Yi-Chun Chen and I-Nan Lin, “Frequency Response of Microwave Dielectric Bi2(Zn1/3Nb2/3)2O7 Thin Films Laser Deposited on Indium-Tin Oxide Coated Glass”, J. Appl. Phys. 87(1), 479—483 (2000).
    46. H. C. Ling, M. F. Yan, and W. W. Rhodes, “High Dielectric Constant and Small Temperature Coefficient Bismuth-Based Dielectric Compositions”, J. Mater. Res. 5, 1752 (1990).
    47. J. C. Nino, M. T. Lanagan, and C. A. Randall, “Dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore”, J. Appl. Phys. 89, 4512—4516 (2001).
    48. I. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, C. A. Randall, and M. T. Lanagan, “Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92”, J. Solid State Chem. 168, 69—75 (2002).
    49. J. C. Nino, M. T. Lanagan, and C. A. Randall, and D. Kamba, “Correlation between infrared phonon modes and dielectric relaxation in Bi2O3-ZnO-Nb2O5 cubic pyrochlore”, Appl. Phys. Lett. 81, 4404—4406 (2002).
    50. W. Ren, S. T. Mckinstry, C. A. Randall, and Tomas R. Shrout, “Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications”, J. Appl. Phys. 89, 767—774 (2001).
    51. S. Kamaba, V. Porokhonskyy, A. Pashkin, V. Bovtum, J. Petzelt, J. C. Nino, S. T. Mckinstry, M. T. Lanagan, and C. A. Randall, “Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7”, Phys. Rev. B 66, 0541061—0541068 (2002).
    52. R. Wangsness, “ Electromagnetic Fields”,John Wiley & Sons, 2nd Edition.
    53. C. Wang, “Determining Dielectric Constant and Loss Tangent in FR-4,” UMR EMC Laboratory Technical Report: TR00-1-041.
    54. M. Sugiyama and T. Nagai, “Anomaly of Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta2/3)O3 Solid Solution and Its Relation to Structural Change,” Jpn. J. Appl. Phys. Vol.32, 4360(1993).
    55. http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/raman.html#c1
    56. http://www.kosi.com/raman/resources/tutorial/
    57. http://physchem.ox.ac.uk/~hmc/tlab/605/html/raman_effect03.htm
    58. G. R. Wilkinson,” Raman Spectra of Ionic, Covalent, and Metallic Crystal,” Marcel Dekker, Inc., New York(1973)
    59. http://en.wikipedia.org/wiki/XRD
    60. http://www.ltcc.de/en/whatis_intro.php
    61. C.-T. Chia, Y.-C. Chen, and H.-F. Cheng, “Correlation of Microwave Dielectric Properties and Normal Vibration Modes of x Ba(Mg1/3Ta2/3)O3-(1-x) Ba(Mg1/3Nb2/3O3) ceramics Ⅰ,” J. Appl. Phys., 94, 3360-3364 (2003).
    62. Y.-C. Chen, H.-Fung Cheng, H.-L Liu and C.-T. Chia, “Correlation of Microwave Dielectric Properties and Normal Vibration Modes of x Ba(Mg1/3Ta2/3)O3-(1-x) Ba(Mg1/3Nb2/3O3) ceramics Ⅱ,” J. Appl. Phys., 94, 3365-3370 (2003).
    63. I. N. Lin, C. T. Chia, H. L. Liu, H. F. Cheng and C. C. Chi, Dielectric Properties of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 Complex Perovskite Ceramics, Jpn. J. Appl. Phys., Part 1 41, 6952-6956 (2002).
    64. H. Ikawa, M. Ohara, T. Iida, M. Takayama and M. Takemoto, J. Ceram. Soc. Jpn. Supple., 112-1, S1614-17 (2004).
    65. B. W. Hakki and P. D. Coleman, IRE Trans. Microwave Theory and Tech., MTT-8, (1960) 402-410.
    66. Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory and Tech., MTT-33, (1985) 586-592.
    67. S. A. Prosandeev, U. Waghmare, I. Levin, and J. Maslar, “First-order Raman spectra of AB’1/2B’’1/2O3 double perovskites”, Phy. Rev. B 71, 214307 (2005).
    68. Igor Levin, Sergey A. Prosandeev, and James E. Maslar, “Effects of 1:1 B-cation order on Raman scattering in complex perovskites AB’0.5B’’0.5O3”, Appl. Phys. Lett. 86, 011919 (2005).
    69. I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, J. Phys. Chem. Solids 59, 181 (1998). R. Tao, I. G. Siny, R. S. Katiyar, R. Guo, and A. S. Bhalla, J. Raman Spectrosc. 27, 873 (1996).
    70. I. G. Siny, R. S. Katiyar, and A. S. Bhalla, “Cation Arrangement in the Complex Perovskites and Vibrational Spectra”, J. Raman Spectrosc. 29, 385 (1998).
    71. Rudolf, Jan Petzelt, Stanislav Kamba, Valentin V. Voitsekhovskiia, Enrico Colla and Nava Sette” Dielectric spectroscopy of Ba(B{,2B’r,,)0, complex perowskite ceramics: Correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012-1014 Hz)”, J. Appl. Phys. 77 (10), 15 May 1995.
    72. B. P. Burton and E. Cockayne, “Why Pb(B,B’)O3 perovskites disorder at lower temperatures than Ba(B,B’)O3 perovskites”, Phy Rev B 60, 18 (1999-II).
    73. Hiroyuki Ikawa and Minoru Takemoto,” Products and microwave dielectric properties of ceramics with nominal compositions (Ba1−xCax)(B1/2B_1/2)O3(B = Y3+, Nd3+, Gd3+; B_ = Nb5+, Ta5+)”, Mater. Chem. Phy. 79, 222–225(2003).
    74. Hiroyuki Ikawa, Minoru Takemoto, Mizuho Katouno, and Masashi Takamura,” Products and microwave dielectric properties of ceramics with nominal composition(Ba0.9Ca0.1)(YxB01/2)O(3x+4.5)/2 (B0=Nb5+, Ta5+)”, J. Euro. Ceramics Society, 23 2511–2514(2003).
    75. Levin, T. G. Amos, J. C. Nino, T. A. Vanderah, C. A. Randall, and M. T. Lanagan, “Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92”, J. Solid State Chem. 168, 69—75 (2002).
    76. S. Kamaba, V. Porokhonskyy, A. Pashkin, V. Bovtum, J. Petzelt, J. C. Nino, S. T. Mckinstry, M. T. Lanagan, and C. A. Randall, “Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7”, Phys. Rev. B 66, 0541061—0541068 (2002).
    77. B. Mihailova, S. Stoyanov, V. gaydarov, M. Gospodinov, and L. Konstantinov, “Raman Spectroscopy Study of Pyrochlore Pb2Sc0.5Ta1.5O6.5 crystals”, Solid State Commun. 103, 623—627 (1997).
    78. Yi-Chun Chen,”Study on Dielectric Mechanisms of Microwave Materials by the Using Full-Bamd Spectroscopy and Scannig Probe Microscopy”.
    79. Du Huiling, Yao Xi, “Dielectric relaxation characteristics of bismuth zinc niobate pyrochlores containing titanium”, Physica B 324 121–126(2002).
    80. D. P. Cann, C. A. Randall and T. R. Shrout, “Invenstigation on the Dielectric Properties of Bismuth Pyrochlores”, Solid State Commun. 100, 529—534 (1996).

    QR CODE