簡易檢索 / 詳目顯示

研究生: 呂杰翰
Chieh Han Lu
論文名稱: 鎵石榴石微波陶瓷的延伸X光吸收精細結構與拉曼光譜研究
Characterizing Microwave Properties of Gallium-Garnet Re3Ga5O12 (Re=Nd, Sm,Eu, Dy, and Yb) Using EXAFS and Raman Spectroscopy
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 59
中文關鍵詞: 陶瓷微波拉曼延伸X光吸收精細結構石榴石
英文關鍵詞: ceramics, microwave, raman, EXAFS, garnet
論文種類: 學術論文
相關次數: 點閱:306下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以延伸x光精細結構光譜(Extended X-ray absorption fine structure)與拉曼散射光譜(Raman spectrum)對Re3Ga5O12 Gallium Garnet陶瓷的微波特性相關性質進行研究,其中A-site元素由不同的稀土族元素所置換,分別為Nd, Sm, Eu, Dy,在X光精細結構光譜的研究中,可發現鎵多面體的相對大小與晶體的介電常數(Dielectric constant)有關;而由對拉曼光譜的分析,可歸納出聲子的半高寬與品質因子(Quality factor)間的關連性,當聲子半高寬較小時,表示晶體的結晶性良好,晶體的振動因而能與外加電磁波的頻率一致(coherent)。關連不同原子結構的聲子性質亦被分析,與A-site結構相關的聲子頻率較高時,表示A-site氧十二面體的體積較小,而鎵多面體的相對體積較大,介電性質的變化被發現與多面體間的相對體積變化有關。
    在摻雜TiO2共同燒結的Sm-Garnet微波特性研究中,我們同樣利用EXAFS與拉曼光譜進行分析,結果顯示,Garnet結構並沒有顯著的改變,而在晶粒的邊界中存在有Ga2O3以及鈦原子相關的化合物,這些二次相的出現降低了邊界的電磁波反射,改善了微波特性。

    Gallium Garnet ( Re3Ga5O12 , Re = Nd, Sm, Eu, Dy ) has potential to be a new candidate material for MIC application. We perform EXAFS and Raman experiments to investigate the lattice structure under different atomic composition. The correlation between dielectric constant and relative volume of gallium centered polyhedron is studied through EXAFS. The dielectric constant increases with the increasing relative volume of Gallium centered polyhedron. Raman spectroscopy reveals that the FWHM of phonons are strong correlated to the quality factor. The Raman shift of the A-site corresponding phonon moves to higher frequency as the dielectric constant increasing, which is agreed with the observation in EXAFS.
    The gallium rich phase Ga2O3 and some titanium compound are found to be between the boundaries of grains of the Sm-Garnet with 1mol% TiO2 added. It is believed these non-garnet phases play the roles that efficiently lower the reflectance of the EM wave when crossing the boundaries and result in higher quality factor.

    Chapter 1緒論 7 1.1微波科技的發展與應用 7 1.2 Re3Ga5O12的晶體結構 8 1.3晶體極化的機制與對介電常數的影響 10 1.4 EXAFS原理與應用 12 1.5拉曼光譜原理與應用 15 1.6參考資料 17 Chapter 2延伸x光吸收精細結構光譜研究 18 2.1實驗設置與方法 18 2.2以鎵原子(Gallium)為散射中心的分析理論 19 2.3以鎵原子為散射中心的分析結果 26 2.4 參考資料 32 Chapter 3 拉曼光譜研究 33 3.1 A3B2(CO4)3結構的群論分析 33 3.2拉曼振動模與對應的晶體結構變化 34 3.3振動模特性與微波介電性質的關連 39 3.4 參考資料 45 Chapter 4 摻雜TiO2於Sm-Garnet輔助燒結的光譜研究 46 4.1摻雜TiO2後SmTiO2的特性變化 46 4.2以鍶原子為散射中心原子的EXAFS與拉曼光譜研究 47 4.3以鈦原子為散射中心原子的EXAFS研究 53 4.4參考資料 57 Chapter 5 結論 58

    [1] Jae Chul Kim, Min-Han Kim, Jong-Bong Lim, and Sahn Nahm, J. Am. Ceram. Soc., 2007, 90 , 641
    [2] H. Sawada , Journal of Solid State Chemistry, 1997, 132, 300-307
    [3] G. Patzke, R. Wartchow, M. Binnewies, Zeitschrift fuer Kristallographie - New Crystal Structures, 1999, 214, 143
    [4]Jackson, John David, Classical electrodynamics-3rd edition,1998, 309
    [5]Charles Kittel, Introduction to solid state physics-7th edition, 1996, 291
    [6]M. Newville, M., B. Ravel, D. Haskel, J.J. Rehr, E.A. Stern, and Y. Yacoby, Physica B, 1995, 208-209, 154
    [7]B. Ravel, S.D. Kelly, 13th International Conference on X-ray Absorption Fine Structure, American Institute of Physics Conference Proceedings, 2007, 882, 150
    [8]B. Ravel, Journal of Alloys and Compounds, 2005, 401, 118
    [9]P. Pfalzer, J.P. Urbach , Phys. Rev. B, 1999, 60, 9335
    [10]H. Wende, Rep. Prog. Phys., 2004, 67, 2105
    [11]Azaroff, V. Leonid, Rev. Mod. Phys., 1963, 35, 1012
    [12]M. Newville, B. Ravel, D. Haskel, J.J. Rehr, E.A. Stern, and Y. Yacoby, Physica B, 1995, 208-209, 154
    [13]B. Ravel, S.D. Kelly, American Institute of Physics Conference Proceedings, 2007, 882, 15
    [14] J.P. Hurrell and S.P.S. Porto and R.P. Bauman, Physical Review, 1968, 173, 3, 851
    [15]B.A. Kolesov, C.A. Geiger, Phys Chem Minerals, 1998, 25, 142
    [16]R.L. Wadsack, Joan L. Lewis, B.E. Argyle, and R.K. Chang , Physical Review, 1971, 3, 12, 4342
    [17]Tracey Chaplin, G. David Price, And Nancy L. Ross, American Mineralogist, 1998, 83, 841
    [18]Hofmeister, A.M. and Chopelas, A., Physics and Chemistry of Minerals, 1991, 17, 503
    [19]Chih-Ta Chia, Pi-Jung Chang, and Mei-Yu Chen, Journal of Applied Physics, 2007, 101, 084115
    [20]B.A. Kolesov ´ C.A. Geiger, Phys Chem Minerals, 1998, 25, 142-151
    [21] Jae Chul Kim, Min-Han Kim, Jong-Bong Lim, and Sahn Nahm, Jong-Hoo Paik and Jong-Hee Kim, J. Am. Ceram. Soc., 2007, 90, 641
    [22] Jae Chul Kima, Min-Han Kima, Sahn Nahma,Jong-Hoo Paik , Jong-Hee Kimb, and Hwack-Joo Lee, J. Eur. Ceram. Soc. 2007, 27 2865
    [23]Ahman, J.;Svensson, G.;Albertsson, J., Acta Crystallographica C, 1996, 52, 1336
    [24]Okrusch, M.;Hock, R.;Schuessler, U.;Brummer, A.;Baier, M.;Theisinger, H., American Mineralogist, 2003, 88, 986
    [25]Weirich, T.E.;Winterer, M.;Seifried, S.;Mayer, J., Acta Crystallographica A ,2002, 58, 308

    QR CODE