簡易檢索 / 詳目顯示

研究生: 杜柏翰
Tu, Po-Han
論文名稱: 微波輔助法製成石墨烯於可撓式複合材料及其可穿戴式傳感器之研究與應用
Microwave assisted fabrication of graphene in flexible composites and applications on wearable strain sensor
指導教授: 李亞儒
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 38
中文關鍵詞: 微波輔助石墨烯應變感測器
英文關鍵詞: microwave assist, graphene, Strain, Sensor
DOI URL: http://doi.org/10.6345/THE.NTNU.EPST.011.2018.E08
論文種類: 學術論文
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個在未來很有前景的方法,利用低成本來大量製成石墨烯,在本論文中我們主要在探討以微波輔助法製成石墨烯於可饒性基板PDMS傳感器之研究,實驗共分三部分,第一部分,以不同參數的溶劑插層後使用微波輔助還原法來製備出石墨烯。第二部分,並以拉曼光譜(Raman)進行分析I2D/IG訊號比來判定石墨烯品質,經過一系列的測試我們發現在硫酸:硝酸鈉:去離子水比為35毫升:0.7毫克:5毫升有最佳的條件,I2D/IG訊號比為0.63。第三部分,藉由拉伸測試來量測應變傳感器進一步得到應變係數(gauge factor),此係數可代表傳感器的靈敏度且應變量(strain)可達到30%,另外我們做了彎曲感測,使石墨烯在未來有更多更廣的應用可能性。傳感器基板我們選擇了聚二甲基矽氧烷(Polydimethylsiloxane,PDMS),此材料具有疏水性、無毒、有彈性、透光性佳等,讓未來石墨烯應變傳感器的應用端可以往生醫,作為人體的感測器。

    In this study, we use a low cost prodecure to make a large amount of graphene. we mainly discuss the microwave-assisted method for the production of graphene on a PDMS sensor. The experiment is divided into third parts. In the first part, the microwave-assisted reduction method was used to prepare graphene after solvent intercalation with different parameters. In the second part, the I2D/IG signal ratio was analyzed by Raman spectroscopy to determine the quality of graphene. After a series of tests, we found that the ratio of sulfuric acid : sodium nitrate : deionized water was 35 ml : 0.7 mg : 5 ml. In the third part, By straining test, we can get the gauge factor. The coefficient can represent the sensitivity of the sensor and the strain can reach 30%. In addition, we have performed bending sensing to make Graphene has more and more application in the future. We chose Polydimethylsiloxane (PDMS) as a sensor’s substract. This material is hydrophobic, non-toxic, elastic, and high transmission. The application of the sensor can be used in the human body.

    目錄 致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vii 第一章 序論 1 1.1前言 1 1.2研究動機 1 1.3文獻回顧 2 第二章 實驗原理 3 2.1石墨烯介紹 (Graphene) 3 2.1.1石墨烯之材料特性及應用 3 2.2單層石墨烯製備方法 5 2.2.1機械剝離法(mechanical exfoliation) 5 2.2.2磊晶成長法(epitaxial growth) 5 2.2.3化學氣相沉積法(chemical vapor deposition,CVD) 6 2.2.4氧化還原法(reduction of graphene oxide) 6 2.3拉曼光譜原理 7 2.3.1拉曼光譜介紹 7 2.3.2石墨烯拉曼光譜分析 10 2.4電阻式傳感器原理 11 第三章 實驗流程與設 12 3.1樣品製作流程 12 3.1.1實驗樣品 12 3.1.2石墨烯製備流程 12 3.1.3氧化石墨之不同材料 14 3.1.4氧化石墨之不同插層濃度 14 3.1.5氧化石墨之不同分散濃度 14 3.1.6 PDMS製備流程 15 3.1.7傳感器製備流程 16 3.2儀器原理 17 3.2.1抽氣過濾(Suction Filtration) 17 3.2.2微波爐原理(Microwave oven) 20 3.3元件材料分析 21 3.3.1掃描式電子顯微鏡(SEM) 21 第四章 結果與討論 23 4.1微波輔助剝離出石墨烯 23 4.1.1微波對石墨烯之特性分析 23 4.1.2氧化石墨之不同材料拉曼光譜分析 24 4.1.3氧化石墨之不同插層濃度拉曼光譜分析 26 4.1.4氧化石墨之不同分散濃度拉曼光譜分析 28 4.2傳感器應變阻值分析 31 第五章 結論 36 第六章 參考文獻 37

    參考文獻
    [1] Y.J. Lai, W.R. Liu “A Facile Approach to Synthesize Graphene Nanosheets Via Microwave Exfoliation for Heat Dissipation Applications” (2017)
    [2] S. Saqib Shams , Ruoyu Zang, Jin Zhu “Graphene synthesis: a Review” Materials Science-Poland, 33(3), 566-578.(2015)
    [3] A.K. Geim et al., Nat. Mater., 6,183 (2007)
    [4] H Hibino, S Tanabe, S Mizuno , H Kageshima“Growth and electronic transport properties of epitaxial graphene on SiC” J. Phys. D: Appl. Phys. 45 154008.(2012)
    [5] Eizenberg M, Blakely J M. “Carbon monolayer phase condensation on Ni(111) ” [ J]. Surface Science, 82 (1 ): 228236. (1979)
    [6] Min Yi and Zhigang Shen “A review on mechanical exfoliation for the scalable production of graphene” Cite this: J. Mater. Chem. A, 3, 11700 (2015)
    [7] Joseph I. Goldstein,Dale E. Newbury,Joseph R. Michael,Nicholas W.M. Ritchie,John Henry J. Scott,David C. Joy“Scanning Electron Microscopy and X-ray Microanalysis” (2017)
    [8] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphitebased systems by Raman spectroscopy [ J]. Physical Chemistry Chemical Physics, ( 11 ): 12761291. (2007)
    [9] Thomsen C, Reich S. Double resonant Raman scattering in graphite[J]. Physical Review Letters, 85 (24): 5214 5217. (2000)
    [10] Morteza Amjadi “Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites” (2015)
    [11] A. C. Ferrari, J. C. Meyer, Scardaci, Casiraghi. Lazzeri,. Mauri, Piscanec, Jiang,. S. Novoselov. Roth, and A. K. Geim “Raman Spectrum of Graphene and Graphene Layers” (2006)
    [12] Wikipedia “Boltzmann distribution” (1902)
    [13] Shugar, G. J.; Shugar, R. A.; Bauman, L.; Bauman, R. S. Chemical Technicians’ Ready Reference Handbook; 2nd ed. McGraw-Hill Book Co. (1981)
    [14] 羅聖全 “科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)” 工業技術研究院奈米科技網 (2004) http://materialsnet.com.tw
    [15] Zhao Jing “Review of graphene-based strain sensors” Chinese Phys. B 22 057701 (2013)
    [16] PubMed “Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates” (2013)
    [17] Song Chen, Yong Wei, Xue Yuan, Yong Lin and Lan Liu “A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure” (2016)
    [18] Chaoyi Yan , Jiangxin Wang , Wenbin Kang , Mengqi Cui , Xu Wang , Ce Yao Foo , Kenji Jianzhi Chee , and Pooi See Lee “Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors” (2014)
    [19] Morteza Amjadi “Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites” (2015)

    無法下載圖示 本全文未授權公開
    QR CODE