研究生: |
江瑋庭 Chiang, Wei-Ting |
---|---|
論文名稱: |
都市雨水下水道淹水圖資建置與分析應用-以永和排水分區為例 Mapping and Analyzing Urban Storm Sewers in Flooding - A Case Study on the YongHe Drainage Division |
指導教授: |
王聖鐸
Wang, Sen-Do |
口試委員: |
王聖鐸
Wang, Sen-do 周學政 Chou, Hsueh-Cheng 林柏丞 Lin, Bo-Cheng |
口試日期: | 2024/06/12 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系地理碩士在職專班 Department of Geography_Continuing Education Master's Program of Geography |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 都市排水 、雨水下水道 、淹水潛勢圖 、SWMM |
英文關鍵詞: | Urban Flooding, Storm Sewer System, SWMM, Potential Inundation Maps |
DOI URL: | http://doi.org/10.6345/NTNU202401328 |
論文種類: | 學術論文 |
相關次數: | 點閱:53 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球暖化與氣候變遷所帶來的極端氣候與降雨現象,短延時強降雨暴雨強度越來越大,嚴峻考驗排水設施的排水能力,使得都會區淹水災害事件頻傳。台灣位處副熱帶季風區,且於環太平洋地震帶上,因此颱風、洪水、地震及坡地災害等經常發生,又因台灣地理環境特殊,地形陡峭,山勢高聳,加上降水的時間及空間分布呈現不均勻的現象,造成台灣最多生命財產損失的災害即是洪水災害。水利署在2018年完成了第三代淹水潛勢圖資的公開作業,這些資料被用來規劃淹水防災措施。然而,淹水潛勢圖的繪製所使用的設計雨型是以Horner雨型為基礎,並在空間上採用均一分布。這種方法與實際降雨的時空間分布情況存在差異,導致淹水潛勢圖可能未能完全準確地反映真實的淹水風險。為增強水利防災人員對各地區淹水情況的決策判斷支援能力,本研究利用真實雨量數據製作暴雨時空間分布序列資料,生成大量符合實際降雨特性的不同模擬雨型。透過這些模擬雨型,結合SWMM淹水模式工具完成事件的淹水模擬。進一步分析這些模擬事件中積淹水的發生機率,製作淹水機率圖資提供防救災工作的參考,以不同的角度評估淹水風險,強化對淹水事件的預測和應對能力。考量到降雨紀錄及下水道設施圖資完整性,本研究選擇新北市永和地區進行深入分析,台灣降雨類型多變,降雨機率也極高,降雨資料相對龐大,因此本研究僅針對災害損失較嚴重的颱風類型降雨數據,搜集永和區雨量觀測站資料,篩選颱風事件雨量紀錄,並從中挑選降雨及延時足夠的降雨事件,以進行對時雨量的時間與空間特性分析。本研究期許能以現有技術或工具,建立氣候變遷情境下災害衝擊的評估,且透過評估成果的判讀,連結其與實際之應用,以此做為後續風險評估的重要參考依據。
The increasing frequency and intensity of extreme weather events and rainfall patterns resulting from global warming and climate change pose significant challenges to urban drainage systems. Taiwan, situated in the subtropical monsoon region and along the Pacific Ring of Fire, frequently experiences typhoons, floods, earthquakes, and slope disasters. The unique geographic characteristics of Taiwan, including steep terrain and uneven distribution of rainfall in time and space, contribute to flooding disasters being the most common and costly in terms of loss of life and property.In 2018, the Water Resources Agency completed the public release of the third-generation flood susceptibility maps, which are utilized for planning flood disaster prevention measures. However, these maps are created using the Horner rainfall model with uniform spatial distribution, which may not accurately represent the actual spatiotemporal distribution of rainfall. Consequently, there may be discrepancies between the flood susceptibility maps and the actual flooding situations. To enhance the decision-making support capability of water resources disaster prevention personnel regarding flood situations in different regions, this study employs real rainfall data to develop a spatiotemporal distribution probability model for heavy rainfall events. Numerous simulated rainfall patterns that match actual rainfall characteristics are generated, and flood simulations for various scenarios are conducted using the SWMM flood simulation model. The probability of accumulated flooding occurrence in these simulated events is further analyzed to produce flood probability maps. These data will provide valuable references for disaster prevention and relief efforts, enabling a comprehensive assessment of flood risks and strengthening the prediction and response capabilities for flood events. Considering the completeness of rainfall records and sewer infrastructure data, this study focuses on in-depth analysis of the Yonghe District in New Taipei City. Given the variability of rainfall types and high rainfall probability in Taiwan, only rainfall data from severe typhoon events with significant disaster losses are selected for analysis. The temporal and spatial characteristics of rainfall intensity are analyzed accordingly. This study aims to establish an assessment of disaster impacts under climate change scenarios using existing technologies or tools. Through the interpretation of assessment results and their connection with practical applications, this assessment will serve as a crucial reference for subsequent risk assessments.
Bonta, J. V., Rao, A. R. (1988). Comparison of four design-storm hyetographs. Transactions of the ASAE, 31(1), 102-0106. Google Scholar.
Carrivick, J.L., and Tweed, F.S.(2016), A global assessment of the societal impacts of glacier outburst floods (in English), Global Planet Change, 144:1-16.
Cunge, J. A.(1980). On the subject of a flood propagation computation method (Muskingum-Cunge method). Journal of Hydraulic Research, 18(2), 139-148.
O’Brien, J.S., Julien, P.Y. and Fullerton, W.T. (1993) Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, ASCE, 119, 244-261.
Kibler, D. F., and Aron G. (1978), Effects of parameter sensitivity and model structure in urban runoff simulationProc. International Symp. Urban Storm Water ManagementLexington, Kentucky July, 1978.
Restrepo-Posada, P.J. and Eagleson, P.S. (1982). Identification of Independent Rainstorms. Journal of Hydrology, 55, 303-319.
Roesner, L. A., and Dickinson, R. E., and Olson, G. B. (1983). A versatile numerical model for hydrograph simulation in small watersheds. Water Resources Research, 19(4), 937-944.
Shubinski, R. P., and Fink, L. C., and Fields, W. S. (1965). Sacramento-San Joaquin Delta Model. Journal of the Hydraulics Division, 91(2), 65-90.
Toro, E. F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons.
Zuwen, J. I., and Vriend, H., and Hu, C. (2003). Application of SOBEK Model in the Yellow River Estuary. Precedents of the International Conference on Estuaries and Coasts, Hangzhou, China.
交通部中央氣象署(2015),「豪(大)雨特報降雨量標準表」,109年3月1日修訂,中央災害防救委員會第37次會議。
朱智瑋(2021),「運用SWMM模式分析評估高雄市管線清淤與滯洪池操作之防洪效益」,國立高雄大學土木與環境工程學系碩士班論文,1-179頁。
吳中興(2005),「高屏溪流域淹水指數之研究(2/2)」,國立聯合大學災害防救科技研究中心,經濟部水利署,1-200頁。
張玉良(2011),「應用地理資訊系統於水文管理之研究-以嘉義鰲鼓溼地為例」,國立中山大學海洋環境及工程學系研究所,1-75頁。
許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭等(2011),「臺灣氣候變遷科學報告」,國家災害防救科技中心。
許恩菁(1999),「設計暴雨雨型序率模式之研究」,國立臺灣大學農業工程學研究所碩士論文,1-97頁。
郭重言、林立青、藍文浩、莊文傑、李俊穎(2014),「臺灣四周海域近十年之海水面變化速率研究」,交通部運輸研究所出版,台北市。
郭重言、林立青、藍文浩、莊文傑、李俊穎(2015),「臺灣四周海域長期性之海水面變化趨勢評估」,交通部運輸研究所出版,台北市。
經濟部水利署水文技術組(2017),「台灣地區雨量測站降雨強度-延時Horner公式參數分析」,經濟部水利署發文字號:經水文字第10730004020號。
經濟部水利署水利規劃試驗所(2007),「區域排水整治及環境營造規劃技術手冊」。
賴桂文水利技師事務所(2007),「FLO-2D模式應用研習會講義」。
賴桂文水利技師事務所(2016),「HEC-RAS水理模式2D模組介紹及應用」。
蘇暉凱(2013),「暴雨誘發天然壩之重建數值模擬-太麻里溪堰塞湖為例」,國立交通大學土木工程系所,1-128頁。
鄭子璉、周乃昉(2000),「徐昇多邊形網法之數值計算」,台灣水利,48卷3期,43-51頁。
鄭克聲(2001),「水文設計應用手冊」,經濟部水資源局,1-342頁。