簡易檢索 / 詳目顯示

研究生: 李哲維
Lee, Che-Wei
論文名稱: 低複雜度路徑排列編碼和排列空間調變解碼器
Design of Low-Complexity Detector for Path-Permutation Codes and Spatial Permutation Modulation
指導教授: 賴以威
Lai, I-Wei
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 多輸入多輸出系統排列陣列排列空間調變路徑排列編碼編碼旋轉保護低複雜度偵測球形解碼
英文關鍵詞: Multiple-input multiple-output, permutation array, spatial permutation modulation, mapping, path-permutation codes, sphere decoder, low-complexity detection, rotated protection
DOI URL: http://doi.org/10.6345/NTNU202100116
論文種類: 學術論文
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將排列陣列應用在物理層和跨層通訊,並提出低複雜度的解碼器。在物理層,我們將排列陣列對應到天線,進而傳送位元,稱為排列空間調變。在跨層通訊,我們將排列陣列對應到網路層的傳輸路徑,進而傳送資料,稱為路徑排列編碼。
    本論文首先分析排列空間調變在使用單一天線情況,以及在開啟多根天線的情況,並分析了不同開啟天線下的排列空間調變的最大似然解碼,並提出適用於排列空間調變的球形解碼,以降低解碼時複雜度,在同樣的位元錯誤率下球形解碼相較於最大似然解碼省了近75%的拜訪節點。
    在路徑排列編碼的部分,我們分析了在快通道下使用多條路徑的情形。我們分析了路徑排列編碼在使用最大後置機率判定法則與對數化最大後置機率判定法則的複雜度,並提出適用於路徑排列編碼的球形解碼,以降低解碼時複雜度。分析的結果,球形解碼與使用最大後置機率判定法則與對數化最大後置機率判定法則的解碼相比,在同樣的位元錯誤率下球形解碼相較於兩者節省了近30%的拜訪節點。
    除此之外我們也提出旋轉保護可以進一步的改善排列傳輸在排列空間調變及路徑排列編碼之間的效能。對於排列陣列,我們提出排列陣列的設計與編碼,並有效降低空間相關性對系統的影響,提供了更好的效能。

    This thesis applies the permutation array to the physical layer and cross-layer communication, and proposes a low-complexity decoder. At the physical layer, we associate the permutation array with the antenna, and then transmit bits, which is called spatial permutation modulation. In cross-layer communication, we will arrange the array to correspond to the transmission path of the network layer, and then transmit data, which is called path permutation code.
    The thesis is first to analyze the fast fading physical layer communication which activate only one transmit antenna. We analyzed the maximum likelihood decoding of spatial permutation modulation and proposed sphere decoding to reduce the complexity of decoding. Under the same bit error rate, the sphere decoding is compared with the maximum likelihood decoding. It saves nearly 75% of visited nodes.
    In the part of path permutation coding, we analyzed the situation of using multiple paths in the fast fading. We analyzed the complexity of path permutation code using the maximum a posterior probability criterion and logarithmic maximum a posterior probability criterion, and proposed a sphere decoding suitable for path permutation coding to reduce the complexity of decoding. As a result of the analysis, the sphere decoding saves nearly 33% compared at the same bit error rate.
    In addition, we also propose that rotation protection to improve the performance. Mapping and permutation set design for spatial permutation modulation, which can effectively reduce the impact of spatial correlation on the system and provide better performance.

    摘要 i ABSTRACT iii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構 4 1.4 符號說明 5 第二章 系統模型 6 2.1 多輸入多輸出系統模型(MIMO) 6 2.2 空間調變(Spatial Modulation) 7 2.3 感知無線電(Cognitive Radio) 9 2.4 假想多輸入多輸出模型(Virtual MIMO) 12 2.4.1 刪除通道模型(Erasure Channel Model) 12 2.4.2 端到端傳輸(End-to-End Transmission) 14 第三章 排列空間調變(Spatial Permutation Modulation)與路徑排列編碼(Path Permutation Code) 16 3.1 排列空間調變(Spatial Permutation Modulation) 16 3.1.1 排列陣列(Permutation Array) 16 3.1.2 排列空間調變 (Spatial Permutation Modulation)傳輸 19 3.1.3 多根天線排列空間調變傳輸 23 3.2 路徑排列編碼(Path Permutation Code) 25 3.2.1 多路徑排列編碼 27 3.3 排列陣列的設計與編碼 29 3.4 排列陣列的旋轉保護 32 3.5 虛擬天線/虛擬路徑的旋轉保護 34 第四章 多天線排列空間調變與多路徑排列編碼之解碼 40 4.1 多天線排列空間調變的解碼 40 4.1.1 開啟單一天線排列空間調變的最大似然解碼 40 4.1.2 開啟單一天線排列空間調變的球形解碼 42 4.1.3 開啟多天線排列空間調變的最大似然解碼 44 4.1.4 開啟多根天線排列空間調變的球形解碼 46 4.2 多路徑排列編碼的解碼 49 4.2.1 路徑排列編碼的最大後置機率判定法則 49 4.2.2 路徑排列編碼的對數化最大後置機率判定法則 53 4.2.3 單一路徑排列編碼的球形解碼 55 4.2.4 多路徑排列編碼的球形解碼 58 第五章 數值結果(Numerical Result) 62 5.1 排列空間調變 62 5.1.1 開啟單一排列空間調變 62 5.1.2 開啟多天線排列空間調變 67 5.1.3 排列空間調變的解碼 69 5.2 路徑排列編碼 72 5.2.1路徑排列編碼的解碼 75 第六章 結論 79 參考資料 81 自傳 85 學術成就 85

    [1]3GPP Technical Report(TR) 38.913 Study on Scenarios and Requirements for Next Generation Access Technologies
    [2]K.-C. Chen, T. Zhang, R. D. Gitlin, and G. Fettweis, “Ultra-low latency mobile networking” IEEE Network, vol. 33, no. 2,pp. 181–187, Mar 2019.
    [3]Samsung Electronics Co., “5G vision, white paper” ,2015
    [4]Marsch, Patrick, and Gerhard P. Fettweis, eds. Coordinated Multi-Point in Mobile Communications: from theory to practice. Cambridge University Press, 2011.
    [5]Alexey Anisimov ,“5G / New Radio Use Cases” ,2019
    [6]A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, Feb. 2014.
    [7]LTE Progress Leading to the Massive Internet of Things, Bellevue, WA, USA, Dec. 2017.
    [8]Z. M. Fadlullah, M. M. Fouda, N. Kato, A. Takeuchi, N. Iwasaki and Y. Nozaki, "Toward intelligent machine-to-machine communications in smart grid," in IEEE Communications Magazine, vol. 49, no. 4, pp. 60-65, April 2011
    [9]S. Lien, K. Chen and Y. Lin, "Toward ubiquitous massive accesses in 3GPP machine-to-machine communications," in IEEE Communications Magazine, vol. 49, no. 4, pp. 66-74, April 2011
    [10]A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surv. Tuts., vol. 16, no. 4, pp. 1801–1819, Fourth Quart. 2014.
    [11]B. Xu, L. Da Xu, H. Cai, C. Xie, J. Hu, and F. Bu, “Ubiquitous data accessing method in IoT-based information system for emergency medical services,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1578–1586, May 2014.
    [12]I.-W. Lai, C.-H. Lee, K.-C. Chen, and E. Biglieri, “Open-loop end-to-end transmission for multihop opportunistic networks with energy-harvesting devices,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2860-2872, 2016.
    [13]G. A. Akpakwu, B. J. Silva, G. P. Hancke and A. M. Abu-Mahfouz, "A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges," in IEEE Access, vol. 6, pp. 3619-3647, 2018
    [14]P. Popovski, K. F. Trillingsgaard, O. Simeone and G. Durisi, "5G Wireless Network Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View," in IEEE Access, vol. 6, pp. 55765-55779, 2018
    [15]Nokia Networks “5G masterplan: five keys to create the new communications era”, 2016
    [16]E. Başar, U. Aygölü, E. Panayirci and H. V. Poor, "Space-Time Block Coded Spatial Modulation," in IEEE Transactions on Communications, vol. 59, no. 3, pp. 823-832, March 2011
    [17]R. Mesleh, S. S. Ikki and H. M. Aggoune, "Quadrature Spatial Modulation," in IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2738-2742, June 2015
    [18]P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel," in Proc. International Symp. Signals, Syst., Electron. (ISSSE’98), Pisa, Italy, pp. 295-300, Sep. 1998.
    [19]H. Jafarkhani, Space-Time Coding, Theory and Practice. Cambridge University Press, 2005.
    [20]V. Tarokh, N. Seshadri and A. Calderbank, "Space Time Codes for high data rate wireless communication: performance criterion and code construction", IEEE Trans Inform. Theory, vol. 44, no. 2, pp. 744-765, March 1998
    [21]M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
    [22]R. Y. Mesleh, H. Haas, S. Sinaovi´c, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241,Jul. 2008.
    [23]M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation,” Proc. IEEE, vol. 102, no. 1, pp. 56–103, Jan. 2014.
    [24]J. Mitola and G. Q. Maguire, "Cognitive radio: making software radios more personal," in IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999
    [25]W. Alhakami, A. Mansour and G. A. Safdar, "Spectrum Sharing Security and Attacks in CRNs: a Review", International Journal of Advanced Computer Science and Applications(IJACSA), vol. 5, no. 1, pp. 76-87, 2014
    [26]K.-C. Chen and R. Prasad, Cognitive Radio Networks. Chichester,U.K.:Wiley, 2009
    [27]K.-C. Chen et al., “Routing for cognitive radio networks consisting of opportunistic links,” Wireless Commun. Mobile Comput., vol. 10, no. 4,pp. 451–466, Aug. 2009
    [28]I.-W. Lai, C.-H. Lee, K.-C. Chen, E. Biglieri, "Path-permutation codes for end-to-end transmission in ad hoc cognitive radio networks", IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3309-3321, Jun. 2015.
    [29]H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789, Nov. 2005.
    [30]Ozdemir, Mehmet Kemal, Ercument Arvas, and Huseyin Arslan. "Dynamics of spatial correlation and implications on MIMO systems." IEEE Communications Magazine pp. 14-19, 2014
    [31]Cheng, Xiang, et al. "Cooperative MIMO channel modeling and multi-link spatial correlation properties." IEEE Journal on Selected Areas in Communications pp. 388-396, 2012
    [32]Forenza, Antonio, David J. Love, and Robert W. Heath. "Simplified spatial correlation models for clustered MIMO channels with different array configurations." IEEE Transactions on Vehicular Technology pp. 1924-1934, 2007
    [33]P.-Y. Chen, W.-C. Ao, and K.-C. Chen, “Rate-delay enhanced multipath transmission scheme via network coding in multihop networks,” IEEE Commun. Lett., vol. 16, no. 3, pp. 281–283,Mar. 2012.
    [34]H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation trellis codes,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1782–1789, Nov. 2005
    [35]A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, ‘‘Generalised spatial modulation,’’ in Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 1498–1502.

    下載圖示
    QR CODE