研究生: |
周威宇 Chou, Wei-Yu |
---|---|
論文名稱: |
雙曲軸異相位機構開發應用於高密度微光學結構陣列快速成形研究 Development of a dual-crankshaft mechanism with out of phase drive for speedy forming high-density optical microstructure array |
指導教授: |
陳順同
Chen, Shun-Tong |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 162 |
中文關鍵詞: | 類高頻往復式進給系統 、雙曲軸異相位平衡驅動機構 、高密度光學微結構陣列 |
英文關鍵詞: | Quasi-high frequency reciprocating feed-tool system, dual-crankshaft balance mechanism with out of phase drive, high-density optical microstructure arrays |
DOI URL: | https://doi.org/10.6345/NTNU202201985 |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一「雙曲軸異相位平衡驅動機構」,應用於往復式進給系統,以便快速製作「高密度光學微結構模仁陣列」。研究先以曲柄連桿式、偏心凸輪式、斜盤凸輪式及橢圓凸輪式等四種驅動機構進行設計、分析與探討,並發現曲柄連桿機構能在高頻驅動下,快速且確動地進行往復直線運動,而其他凸輪機構,在高頻運動下,刀具「跟隨性(Following performance)」低,易造成定位誤差。研究首先設計並建構一部「三軸CNC類高頻往復式進給系統工具機」,並提出「雙曲軸異相位平衡驅動機構」設計,利用互成180º的雙偏心輪,進行同向等速轉動,可抵消單偏心輪驅動所引發的系統振動問題,所以刀具在任何位置均可獲得平穩運動。經由實驗分析與測試得知,單曲軸驅動的刀具最大驅動頻率至12.5Hz時,系統振幅便已超出1.0µm;而雙曲軸驅動的刀具最大驅動頻率可至40Hz。實驗以雙曲軸異相位驅動機構搭配單晶鑽石刀具加工高密度微凹坑結構陣列進行驗證。於無氧銅上,工件速度480 mm/min,刀具驅動頻率30 Hz下,類高頻往復式進給系統可在6×8 mm2面積內,快速加工出27×40的高密度微凹坑陣列結構,時間僅需320秒,表面粗糙度可達Ra0.023µm;於鎳磷合金上,工件速度480 mm/min,刀具驅動頻率37.5 Hz下,類高頻往復式進給系統可在5×5 mm2面積內,快速加工出23×50的高密度微凹坑陣列結構,時間僅需320秒,表面粗糙度可達Ra0.024µm,顯示「雙曲軸異相位驅動機構」著實能有效抑制系統振動,使往復式進給系統獲得類高頻穩定切削效果。
This paper presents the development and application of a dual-crankshaft balance mechanism with out of phase drive for rapidly fabricating high-density optical microstructure mold-core arrays. Four kinds of different drive-mechanisms involving crank-linkage, eccentric-cam, swash-plate-cam, and elliptical cam are devised and analyzed. The crank-linkage is employed as the driving mechanism for the reciprocating feed-tool system since it has an excellent positivity for speedily reciprocating motion, while the rest create the inferior tool following performance leading to a positioning errors occurred under high-frequency motion. In this study, a 3-axis CNC machine tool with quasi-high frequency reciprocating feed-tool system is first designed and constructed. A dual-crankshaft balance mechanism with out of phase drive, in which a pair of eccentric cams reveal a relationship of 180º symmetry with each other and rotation in co-direction and constant velocity, is designed and employed to counterbalance the system vibration. Hence, the tool can be kept in a steady state at any position. Via experimental analysis and trial, in the case of with 'a single crankshaft drive', the system vibrational amplitude is more than 1.0 m once the tool work frequency has arrived at 12.5 Hz. On the contrary, a tool work frequency of 40 Hz can be realized in the case of with 'a dual-crankshaft drive'. Based on the dual-crankshaft driving mechanism and the designed monocrystalline diamond tool, experimental verifications are conducted to rapidly machine high-density optical microstructure mold-core arrays. In the case of 'oxygen free copper', a microdimple array of 27×40 is promptly finished at a work frequency of 30 Hz, workpiece speed of 480 mm/min, cutting area of 6×8 mm2, processing time of 320 seconds and surface roughness of Ra0.023 µm can be achieved. In the case of 'nickel-phosphorous plated alloy', experimental results demonstrate that a high-density microdimple array of 23×50 can be accomplished within 320 seconds at a cutting area of 5×5 mm2, work frequency of 37.5 Hz, and workpiece speed of 480 mm/min. These approaches and conditions generated high-density optical microstructure mold-core arrays with highly consistent micro features confirming that the developed dual-crankshaft balance mechanism is well suited to the high reproducibility of consistently precise machined dense microstructure arrays.
1. Forest C.R., Saez M.A., Hunter I.W., 2007. Microforging technique for rapid, low-cost fabrication of lens array molds, Applied Optics, Vol.46, No.36, pp.8668-8673
2. Nagata F., Mizobuchi T., Tani S., Watanabe K., Hase T., Haga Z., 2009. Impedance model force control using a neural network-based effective stiffness estimator for a desktop NC machine tool, Journal of Manufacturing Systems, Vol.28, pp.78-87.
3. Saito Y., Yabu H., 2015. Bio-inspired low frictional surfaces having micro-dimple arrays prepared with honeycomb patterned porous films as wet etching masks, Langmuir, Vol.31, No.3, pp.959-963.
4. Freeman A.R., Array-based microenvironment for cell culturing, cell monitoring and drug-target validation, U.S. Patent 6653124 B1, Nov 25, 2003.
5. Meng F., Davis T., Cao J., Wang Q.J., Hua D., Liu J., 2010. Study on effect of dimples on friction of parallel surfaces under different sliding conditions, Applied Surface Science, Vol.256, pp.2863-2875.
6. Denkena B., Kastner J., Wang B., 2010. Advanced microstructures and its production through cutting and grinding, CIRP Annals - Manufacturing Technology, Vol.59, pp.67-72
7. Tang M., Shim V., Pan Z. Y., Choo Y. S., Hong M. H., 2011. Laser Ablation of Metal Substrates for Super-hydrophobic Effect, JLMN-Journal of Laser Micro/Nanoengineering, Vol.6, No.1, pp.6-9
8. Qu N.S., Chen X.O., Li H.S., Zeng Y.B., 2014. Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist, Chinese Journal of Aeronautics, Vol.27, pp.1030-1036
9. Patel D., Jain V.K., Ramkumar J., 2015. Surface Texturing for Inducing Hydrophobicity, Manufacturing Science Lab, Vol.15, No.1, pp.46-53
10. 童永宏,2015,一種機械式類快刀伺服裝置的設計研究,國立臺灣師範大學,pp.24-25
11. 王嬋,2016,精密超精密加工,中國航空新聞網:
http://www.cannews.com.cn/2016/0315/149944.shtml
12. 周志斌,肖沙里,周宴,汪科,2005,現代超精密加工技術的概況及應用,技術出版社
13. Brinksmeier E., Gläbe R., Osmer J., 2007. Ultra-Precision Diamond Cutting of Steel Molds, ScienceDirect, Vol.55, pp.551-554
14. Yan J.W., Zhang Z.Y., Kuriyagawa T., Gonda H., 2010. Fabricating micro-structured surface by using single-crystalline diamond endmill, International Journal of Advanced Manufacturing Technology, Vol.51, pp.957-964
15. KERN ultra compact CNC machining, http://www.kern-microtechnik.com/
16. MAKINO vertical Machining Centers,
https://www.makino.com/engineering-services/
17. KUGLER Flycutter-Fräsmaschinen, https://www.kugler-precision.com/
18. Precitech Large oil-bearing drum roll lathes, http://www.precitech.com/
19. Yi A.Y., Li L., 2005. Design and fabrication of a microlens array by use
of a slow tool servo, OSA publishing, Vol.30, pp.1707-1709
20. Ma C.X., Ma J., Shamoto E., Moriwaki T., 2011. Analysis of regenerative chatter suppression with adding the ultrasonic elliptical vibration on the cutting tool, Precision Engineering, Vol.35, pp.329-338
21. Zhang J.G., Suzuki N., Wang Y.L., Shamoto E., 2014. Ultra-precision nano-structure fabrication by amplitude controlsculpturing method in elliptical vibration cutting, Precision Engineering, Vol.39, pp.86-99
22. Yu D. P., Wong Y. S., Hong G. S., 2011. Optimal selection of machining parameters for fast tool servo diamond turning, Journal of Advanced Manufacturing Technology, Vol.57, pp.85-99
23. Chen Y. D., Fuh C. C., Tung P. C., 2005. Application of Voice Coil Motors in Active Dynamic Vibration Absorbers, IEEE TRANSACTIONS ON MAGNETICS, Vol.41, No.3, pp.1149-1154
24. 何學文,一種雙曲軸自平衡的內燃機及其驅動單元,中國人民共和國國家知識產標局,103410611A,Nov 27,2013.
25. Berger A. H., Clarke J. R., Dual crankshaft engine with counter rotating inertial masses , U.S. Patent 7533639 B1, May 19,2009.
26. 安永 暢男、高木 純益郎,2002,精密機械加工原理,全華科技圖書股份有限公司,pp.68-74
27. 金屬切削,http://www.taiwan921.lib.ntu.edu.tw/mypdf/mf14.pdf
28. 王千億、王俊傑,2015,機械製造,全華科技圖書股份有限公司,第五章,pp.3-10
29. 陳順同、蔡俊毅,1999,車床實習I,全華科技圖書股份有限公司
30. 台中精機股份有限公司,立式加工機Vcenter55/70,http://www.or.com.tw/
31. 慶鴻機電工業股份有限公司,線切割機CW640S1,http://www.chmer.com/
32. 台中精機股份有限公司,CNC車床Vturn-16,http://www.or.com.tw/
33. 建德工業股份有限公司,平面磨床,http://www.kentind.com/
34. JEOL,Scanning Electron Microscope,JSE-6360,http://www.jeol.co.jp/en/
35. 漢磊精密科技有限公司,工具顯微鏡,http://www.aixon.com.tw/
36. OLYMPUS,雷射共軛焦顯微鏡OLS4100,https://www.olympus.com.tw/
37. The Imagine Source,DMK41UA02,https://www.theimagingsource.tw/
38. 三聯科技股份有限公司,渦電流感測器PU-05,http://www.sanlien.com/
39. 大詠城機械股份有限公司,球墨鑄鐵(FCD400),http://www.wsmc.com.tw/specification.php?show=2
40. MatWeb, AISI 1045, http://www.matweb.com/search/DataSheet.aspx?MatGUID=6b29957fc95e426d87dff64d67c59f6c
41. 維信鋁合金有限公司,鋁合金(Al 6061-T6),http://www.wsal.com.tw/ugC_Support6061.asp
42. 達塑工程股份有限公司,塑鋼(FRP),http://www.darso.com.tw/article2.html
43. 台灣雨虹有限公司,無氧銅(OFC),
http://www.rainbow-alloys.com.tw/products/product_view_tw/405
44. 柳松鑽石科技股份有限公司,單晶鑽石刀具,http://www.lusung.com.tw/material.html
45. 王宗裕,2003,高速往復式進給機構之動態平衡分析與改善,國立雲林科技大學機械工程研究所
46. 日商駿河精機股份有限公司,BSS16-60C,http://tw.surugaseiki.com/
47. 日本精工株式會社,7900CTYNSULP4,http://www.tw.nsk.com/
48. 台灣三住,軸承座規格書,http://tw.misumi-ec.com/
49. Maxon motor ag, EC-4pole, http://www.maxonmotor.com/
50. 台灣三住,確動皮帶與皮帶輪,http://tw.misumi-ec.com/
51. 鍾義,2015,機件原理,台科大圖書股份有限公司
52. 庄司 克雄,2004,超精密加工と非球面加工,エヌ・ティー・エス
53. Shaw. M. C., 2004. Metal Cutting Principles, Oxford Series on Advanced Manufacturing, pp.16-20
54. Merchant M. E.,2006. In Memoriam, ASME, Vol.128, pp.1034-1036
55. 實威股份有限公司,2015,SOLIDWORKS Simulation 2015,實威股份有限公司,第24章
56. Mitutoyo, 2016 , Quick Guide To Surface Roughness Measurement, No. 2229
57. Fang F. Z., Wu H., Liu X. D., Lim G. C., Liu Y. C., Ng S. T., 2003. Fabriction of micro grooves, Singapore Institute of Manufacturing Technology