簡易檢索 / 詳目顯示

研究生: 謝孟揚
Hsieh, Meny-Yang
論文名稱: 分析學生如何利用二維拋體軌跡圖解題
Analysis the students’ problem solving skill based on a figure of 2-D trajectories
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 107
中文關鍵詞: 拋體運動初始發射角鉛直高度水平射程物理奧林匹亞
英文關鍵詞: Projectile Motion, Initial Launch Angle, Vertical Height, Horizontal Range, Physics Olympiad
論文種類: 學術論文
相關次數: 點閱:77下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以國立臺灣師範大學103學年度入學的大一新生,且修習普通物理實驗的理學院學生作為主要研究對象,共計257人,並配合物理系77名大二學生作對照,主要在探討學生在二維拋體拋體運動測驗,題目提供5條拋體軌跡的數據圖,讓學生運用數據圖中的資訊進行解題。題型由兩個小題組成,其中第1小題是探究學生高度與飛行時間的概念,幾乎不太需要計算。第2小題以計算題的方式呈現,探討學生如何利用圖中資訊,求得5條軌跡的初始速率大小關係。上述試測的結果並與2014年11月9日物理奧林匹亞初選考試的結果進行交叉比對答案類型。此次初選考試共2435名學生參加,其第1小題答對率接近90%,第二小題答對率約為1/3。
    根據研究結果發現,學生的解題過程類型可分為七個類型,其中最常使用的類型為「使用運動學概念並直接代入數值計算」及「使用兩兩比較法」解題,各有五分之一的受試者。歸納其錯誤原因為(一)有數據計算過程的解題過程:「另有概念」、「列出錯誤的速度關係式」、「無法由數據圖資料判讀三角函數」、「忽略x、y軸單位長度的比值」及「計算錯誤」。(二)使用兩兩比較法的解題過程:「相同水平射程變因的軌跡線判斷錯誤」、「無法列出足夠的關係式」及「粗心而列錯關係式」。
    受試者主要的錯誤為:由二維拋體數據圖欲解答物體的發射初速度時,對於相同水平射程的軌跡,疏忽初始發射仰角的因素,造成錯誤;因此我們建議於教學時加以檢視水平射程和仰角的關聯。雖然學生知道45o角拋射時,水平射程最遠,但是反過來就不是很清楚,也就是當水平射程相同、仰角為45o時,初速率為最小的概念。

    This work is focused on student learning of two-dimension projectile motion. A data graph with five trajectories mimics the trace of 5 projectiles by varying the initial launch angle, vertical height and horizontal range. However, the vertical scale of the data graph is in unit of 100 m, while the horizontal scale is in unit of 1000 m. The freshman of Department of Mathematics, Physics, Chemistry, Life-science, Earth Sciences, and Industrial Education of National Taiwan Normal University participated the 30-minitue test on their very first class of General Physics Laboratory. A total of 257 freshmen took the exam. Seventy-seven sophomores of Department of Physics were also taken the same exam to serve as a reference for comparison. The main purpose of this study is to examine how students solve problems using the information given in a plot diagram of projectile motion.
    There are two parts of the test question. The first part is to write down the flight-time ordering of the 5 projectiles, and the second part is to find the magnitude ordering of initial speeds. Roughly, around 84% students got the correct answer for the first part, while 15% students for the second part. It is not necessary to compute the flight time nor the initial speed to get the correct answer, however, we do find the higher correct rate for student using formula for the second part. These results were cross-compared with the results of International Physics Olympiad on 9th of November, 2014. 2435 students participated in the exam, and the correct rate of the first part was 90%, that of the second part was 33%.
    We find that over 50% students do not know the effect of initial launch angle on the initial speed when two trajectories have the same horizontal range, though most of them know that the horizontal range is maximum for a launch angle of 45°for the same initial speeds. Students were trained to know the initial launch angle of 45° gives a maximum horizontal range, they do not know the projectiles having the same horizontal range is the 45 one possess a minimum initial speed.

    致謝 i 中文摘要 ii 英文摘要 iii 目錄 v 表目錄 vii 圖目錄 ix 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究問題 2 第四節 名詞釋義 2 第五節 文獻探討 3 一、題目表徵形式 3 二、問題解決歷程與策略 5 三、錯誤類型 9 四、拋體運動另有概念之相關研究 12 第二章 研究工具 15 第一節 2014年物理奧林匹亞斜拋試題分析與討論 16 第二節 二維數據圖斜拋運動紙筆測驗設計 18 第三節 參考解題法分析與討論 20 第四節 解題歷程分析工具 30 第三章 研究方法 31 第一節 研究架構 31 第二節 研究流程 32 第三節 研究對象 33 第四節 資料處理 34 第五節 研究範圍與限制 34 第四章 研究結果 35 第一節 「二維數據圖斜拋運動測驗」解題過程類型與錯誤原因之分析 35 第二節 解題歷程分析 60 第三節 試題參數與解題過程類型之分析 70 一、二維數據圖H、S、t變因之分析 70 二、二維數據圖x、y軸單位長差異因素之分析 77 第四節 物理奧林匹亞斜拋問題答案類型之分析 82 第五章 結論與建議 94 第一節 結論 94 第二節 建議 100 參考文獻 103 一、中文部分 103 二、英文部分 104 附錄 106

    一、中文部分
    錯解辨析(1995)。九章出版社編輯部。台北:九章出版社。
    全中平(1994)。師範學院學生對學習物理力學概念之分析研究。國立台北師院學報,第7期,481-506。
    林清山、張景媛(1994)國中生代數應用題教學策略效果之評估。教育心理學報,第27期,35-62。
    郭生玉(2004)。心理與教育測驗(修訂一版)。 臺北:精華。
    張俊彥,翁玉華(2000)我國高一學生的問題解決能力與其科學過程技能之相關性研究。科學教育學刊,第八卷第一期,35-55。
    陳啟明(民89)。不同題目表徵型式及相關因素對國小五年級學生解題表現之影響。國立嘉義大學國民教育研究所碩士論文。
    陳章正、江新合(2006)。高中學生物理解題歷程之研究。中華民國第二十二屆科學教育學術研討會。
    陳章正、蘇明俊、江新合(2007)。高中物理解題教學及評量策略之行動研究。屏東教育大學學報:理工類,27,103-128。
    劉秋木(民85)。國小數學科教學研究。台北市:五南。
    蔡興國、陳錦章、張惠博(2010)。高中學生解題歷程之力圖表徵與列式關係之研究。 科學教育學刊,18卷2期,155-175。
    簡順永(2002):高二學生力概念的運用調查分析。臺北市:國立臺灣師範大學物理系碩士論文。未出版。
    譚寧君(民81)兒童數學態度與解題能力之分析探討。台北師院學報,5,619-688。
    二、英文部分
    Beicher, R. J. (1994). Testing student interpretation of kinematics graphs. American Association of Physics Teachers, 62(8), 750-756.
    Brasell, H. M. & Rowe, M. B. (1993). Graphing skills among high school physics students. School Science and Mathematics, 93(2), 63-69.
    Brown, J.S. & Van Lehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive Science, 4, 379-426.
    Bruner, J.S.(1966). Toward a theory of instruction.Cambridge, MA:Harward University.
    Cleveland, W. S., & McGill, R.(1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of American Statistical Association, 79(387), 531 (387), 531-554.
    Diezmann, C. M. and Watters, J. J. & English, L. D. (2001) Difficulties confronting young children undertaking investigations. In Proceedings 26th Annual Conference of the International Group for the Psychology of Mathematics Education, Utrecht, Holland.
    Engelhardt, J. M. (1982). Using computational errors in diagnostic teaching. The Arithmetic Teacher, 29(8), 16-19.
    Finegold, M. & Gorsky, P. (1991). Student’s concepts of force as applied to related physical systems:A search for consistency, Int.J.SCI.EDEU,13(1),97.
    Glass, A. L., & Holyoak, K. J. (1986). Cognition. NY: Random House.
    Gunstone, R.F.&White, R.T. (1981). Understanding gravity. Science Education, 65(3), 291-299.
    Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065.
    Hegarty, M., and Just, M. A. (1989). Understanding machines from text and diagrams. In Mandl, H., and Levin, J. R. (eds.), Knowledge Acquisition From Text and Pictures, Elsevier Science, New York.
    Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440-454 .
    Hestenes, D., Wells, M., & Swackhamer, G.(1992). Force Concept Inventory. The Physics Teacher, 30, 141-158.
    Hiebert, J. & Carpenter, T. P.(1992). Learning and teaching with understanding. In Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning, ( pp. 65-97). New York: Macmillan.
    Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-assessment when solving physics problems. Physics Education Research 1.

    Kohl, P. B., & Finkelstein, N. D. (2006). Effects of representation on students solving physics problems: A fine-grained characterization, Physics Education Research 2.
    Kramarski, B. & Mevarech, Z. R. (1997). Cognitive-metacognitive training within a problembased Logo environment. British Journal of Educational Psychology, 67, 425-445.
    Larkin, J.H. (1983). The role of problem representation in Physics. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 75-98). Hillsdale, NJL: Lawrence Erlbaum.
    Leinhardt, G., Zaslavsky, O, & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and systems. Review of Educational Research, 60, 1-64.
    Lesh, R., Post, T., & Behr, M.(1987).Representations and translations among representation in mathematics learning and problem solving. In C. Janvier(Ed.).Problems of representation in the teaching and learning of mathematics, 33-40.Hillsdale, NJ: Erlbaum.
    Lester, F. K. (1980). Problem solving: Is it a problem? In M. M. Lindquist
    Marshall, S.P. (1987). Schema Knowledge Structures for Representing and Understanding Arithmetic Story Problem, First Year Technical report, San Diego State University, California, Department of Psychology, 79(4), 372–333.
    Marshall, S.P., & Smith, J.D.(1987). Sex difference in learning mathematics: A longitudinal study with item and error analysis. Journal of Educational Psychology, 79(4),373–383.
    Mayer, R. E. (1985). Implications of Cognitive Psychology for Instruction in Mathematical Problem Solving. In E. A. Silver (Ed.) Teaching
    Mayer, R. E. (1992). Thinking, problem solving, cognition. NY : W. H. Freeman and Company.
    McDermott ,U. L.(1984). Research on conceptual under standing in mechanics. Physics Today ,11 ,24-32.
    Oliva, J. M. (1999). Structural Patterns in Students’ Conceptions in Mechanics. International Journal of Science Education, 21 (9): 903-920
    Polya, G. (1945). How to solve it. Garden City, NY: Doubleday and Co., Inc.
    Sowder, L., & Threadgill-Sowder, J. ( 1982 ). Drawn versus verbal formats for
    mathematical story problems. Journal for Research in Mathematics Education, 13( 5 ),324-331.
    Za'rour, G.I. (1975).Science misconceptions amongst certain groups of students in Lebanon.Journal of Research in Science Teaching, 12(4), 385-391.

    下載圖示
    QR CODE