簡易檢索 / 詳目顯示

研究生: 林佳璇
LIN, JIA-XUAN
論文名稱: 運用感知形容詞中文字型推薦之設計與分析
Design and Analysis of Chinese Font Recommendation with Emotional Adjectives
指導教授: 周遵儒
Chou, Tzren-Ru
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 151
中文關鍵詞: 人工智慧人工智慧設計字型推薦自然語言處理文件分類感知形容詞隱喻詞彙
英文關鍵詞: Artificial Intelligence, Artificial Intelligence Design, Font Recommendation, Natural Language Processing, Text Classification, Emotional Adjective, Metaphor
DOI URL: http://doi.org/10.6345/NTNU202001078
論文種類: 學術論文
相關次數: 點閱:222下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工智慧設計在傳播與相關設計領域已經逐漸受到關注,利用人工智慧、機器學習、自然語言處理技術所建構的設計代理人與自動化高速設計系統開始在一些設計與電商平台上扮演非常重要的角色。字型推薦方法的開發可為未來自動化設計提供技術基礎,有助於即時化、客製化、低成本、極大量的新形態設計趨勢需求。本研究設計一個運用感知形容詞中文字型推薦方法,以詞嵌入技術配合所收集23個特定感知形容詞的隱喻詞彙開發出短文字語句之情感分類器,使得設計內容的文字能自動運算出最符合該輸入語句的情感表達結果,之後再利用感知形容詞與字型的對應關係,最後得出該文字語句字型運用的推薦建議,並評估此字型推薦方法的有效性。
    研究結果顯示,運用感知形容詞中文字型推薦方法設計中,感知形容抽取演算法輸出結果與受測者對文句語意的理解較為相符,大部分中文字型指派與文字語意的匹配呈度高,但系統輸出的第一名字型與隨機字型之間對語意的匹配度影響較小。綜上所述,本研究所設計之推薦方法具有很高的可行性,但是仍有一定程度的改進空間。

    Artificial intelligence design has gradually attracted attention in the field of graphic communication and related design. Design agents and automated high-speed design systems constructed using artificial intelligence, machine learning, and natural language processing technologies have begun to play a very important role on some design and e-commerce platforms. Development of font recommendation method can design automation to provide technical basis for the future. It helps to meet the needs of immediacy, customized, reduce the cost, and extremely large new trend of form design requirements. This paper will design a content-based font recommendation method for graphic design, and develop an emotional classifier for short text sentences using the word embedding technology and the collected metaphors corresponding to 23 specific emotional adjectives. The most suitable emotional representation of an input sentence can be obtained resulting from this classifier, and finally get its font recommendation according to the relationship of emotion adjectives and fonts. A prototype application system test platform will also be constructed in this project to evaluate the effectiveness of this font recommendation method, and explore the possibility of its application in plane communication and design.
    The research results have shown that in the design of recommendation methods for Chinese fonts based on emotional adjectives, the output results by selection algorithm of emotional adjectives are relatively consistent with the subjects’ understanding of the sentences. Most Chinese font assignment is highly matched with the meanings of the sentences. But the NO.1 font output by the system and the random fonts have little impact on the matching degree of the meanings of the sentences. To sum up, the recommendation methods designed by this study are highly feasible, but they still need some improvement.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 4 第三節 研究範圍與限制 4 第四節 名詞釋義 5 第五節 研究流程 7 第貳章 文獻探討 8 第一節 感知形容詞與字型 8 第二節 推薦系統 15 第三節 文獻探討小結 24 第叁章 研究方法 25 第一節 研究架構 25 第二節 研究設備與工具 26 第三節 研究實施 26 第四節 問卷調查實驗 37 第五節 資料處理與分析 43 第肆章 研究結果與討論 45 第一節 感知形容詞抽取演算法評估結果 45 第二節 文字語意字型匹配度評估結果 51 第伍章 研究結論與建議 57 第一節 研究結論 57 第二節 研究建議 59 參考文獻 61 附件一、問卷完整題庫 68 附件二、感知形容詞抽取演算法輸出結果 71 附件三、Naïve Bayes分類器輸出結果 75 附件四、文句語意對應感知形容詞問卷結果 79 附件五、系統輸出第一名字型匹配度評量結果 83 附件六、系統輸出隨機字型匹配度評量結果 90 附件七、不同專業背景匹配度評量結果 97 附件八、實驗一調查問卷 110 附件九、實驗二調查問卷 117

    台北市媒體服務代理協商會(2009-2019)。台灣媒體白皮書。檢索日期:2019年11月20日。取自https://maataipei.org/
    朱郁筱、呂琳媛(2012)。推薦系統評價指標綜述。電子科技大學學報。41(2),163-175。
    行政院主計總處(2019)。家庭現代化設備(每百戶擁有數)報紙。檢索日期:2019年11月20日。取自
    https://statdb.dgbas.gov.tw/pxweb/Dialog/varval.asp?ma=CS2471N1A&ti=%A1i%A7%EF%A8%EE%AB%E1%A1j%BF%A4%A5%AB%AD%AB%ADn%B2%CE%ADp%AB%FC%BC%D0%A6%DB%BF%EF%B6%B5%A5%D8&path=../database/CountyStatistics/&lang=9
    杉浦康平(1990)。造型的誕生宇宙圖像論。台北市:雄獅美術。
    季然、楊敏(2019)。阿里「鹿班」系統的出現對本科視覺傳達設計專業教學的影響。北京印刷學院學報。27(4),84-86。
    陳美秀(2004)。中文讀者是否反應故事人物的情感?中華心理學刊。46(2&3),171-179。
    梁披雲(1987)。中國書法大辭典。廣州市:廣東人民出版社。
    陳學志、詹雨臻、馮彥茹(2013)。台灣地區華人情緒與相關心理生理資料庫—中文情緒隱喻的刺激常模。中華心理學刊。4(55),525-553。
    Nielsen媒體大調查(2008)。檢索日期:2019年11月20日。取自https://www.nielsen.com/tw/zh/insights/
    Nielsen媒體大調查(2018)。檢索日期:2019年11月20日。取自https://www.nielsen.com/tw/zh/insights/
    張碧珍(2009)。《中文情緒性隱喻之判斷與應用》。國立嘉義大學外國語言學系研究所,碩士論文。
    喻蓉杰(2012)。《漢字字體設計造型及其情感分析研究》。武漢理工大學設計藝術學專業,碩士論文。
    曾德平(2010)。文章字體與閱讀情緒之初探。國立成功大學工業設計研究所,碩士論文。
    楊麗瑄(2014)。漢字字體設計中造型的情感表現方式。設計。09,116-117。
    趙雯(2011)。視覺設計中的字體選擇。藝術與設計(理論)。2(08),63-65。
    馮議徹(2007)。《漢字的筆劃特徵與風格意象》。國立成功大學工業設計研究所,碩士論文。
    潤利艾克曼公司(2019)。2019年第一季媒體大調查報告。檢索日期:2019年11月20日。取自
    http://www.rmb.com.tw/images/html/downloadfile/2019%E5%B9%B4%E7%AC%AC%E4%B8%80%E5%AD%A3%E3%80%90%E6%BD%A4%E5%88%A9%E8%89%BE%E5%85%8B%E6%9B%BC%E5%85%AC%E5%8F%B8%E3%80%91%E5%AA%92%E9%AB%94%E5%A4%A7%E8%AA%BF%E6%9F%A5%E5%A0%B1%E5%91%8A.pdf
    數位時代(2017)。人工智慧到底在幹嘛?檢索日期:2019年11月20日。取自https://www.bnext.com.tw/article/42632/what-is-ai
    戴孟宗、廖彥筑、陳姵君、柯奏任(2012)。中英字型意象之研究。中華印刷科技年報。673-691。
    Aggarwal, C. C. (2016). An introduction to recommender systems. Recommender Systems The Textbook. Switzerland: Springer.
    Amatriain. (2013). Big & personal: Data and models behind netflix recommendations. In Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, 1-6.
    Ayadi, M. E., Kamel, M. S., & Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition, 44(3), 572 – 587.
    Balakrishnan, S., & Chopra, S. (2012). Collaborative ranking. Proceedings of the fifth ACM International Conference on Web Search and Web data Mining, WSDM 2012. 143-152.
    Bell, R. M., Koren, Y., & Volinsky, C. (2007). The BellKor solution to the Netflix Prize. Netflix Prize.
    Bitouk, D., Verma, R., & Nenkova, A. (2010). Class-level spectral features for emotion recognition. Speech Communication, 52(7-8), 613 – 625.
    Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.
    Breiman, L. (2001). Random forest. Machine Learning. 45(1), 5-32.
    C.J, V.R. (1979). Information Retrieval. Newton, MA: Butterworth-Heinemann.
    Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 1-25.
    Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, 13(1), 21-27.
    Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. New York, NY: Cambridge University Press.
    Dodds, P. S., & Danforth, C. M. (2009). Measuring the happiness of large scale written expression: Songs, blogs, and presidents. Joural of Happiness Studies, 11(4), 441–456.
    Elahi, M., & Ricci, F., & Rubens, N. (2016). A survey of active learning in collaborative filtering recommender systems. Computer Science Review. 20, 29-50.
    Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics. 29(5), 1189-1232.
    Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning. 29(2-3), 131-163.
    Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communication of The ACM. 35(12), 61-70.
    Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS). 22(1), 5-53.
    Iliev, A. I., Scordilis, M. S., Papa, J. P. & Falcão, A. X. (2010). Spoken emotion recognition through optimum-path forest classification using glottal features. Computer Speech and Language, 24(3), 445 – 460.
    Kastl, A. J., & Child, I. L. (1968). Emotional meaning of four typographical variables. Journal of Applied Psychology, 52(6, Pt.1), 440–446.
    Keshtkar, F., & Inkpen, D. (2011). A hierarchical approach to mood classification in blogs. Natural Language Engineering, 18(1), 61–81.
    Kim, H. -Y. & Lim, S. -B. (2018). Emotion-based Hangul font recommendation system using crowdsourcing. Cognitive Systems Research. 47, 214-225.
    Koch, B. E. (2012). Emotion in typographic design: An empirical examination. Visible Language, 46 (3), 206-227.
    Koren, Y. (2009). The BellKor Solution to the Netflix Grand Prize. Netflix Prize.
    Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: The University of Chicago Press.
    Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing. 7(1). 76-80.
    LOGASTER. (2012). Retrieved 20 November 2019, from https://www.logaster.com/
    Looka. (2019). Retrieved 20 November 2019, from https://looka.com/logo-maker/app
    Markmaker. (2015). Retrieved 20 November 2019, from https://emblemmatic.org/markmaker/#/
    Melville, P., & Sindhwani, V. (2017). Recommender Systems. Encyclopedia of Machine Learning. Chapter No: 00338. 1-9.
    Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word representations in vector space. Proceedings of the International Conference on Learning Representations Workshop Track, Arizona, USA, 1301-3781.
    Mishne, G. (2005). Experiments with mood classification in blog posts. In Proceedings of the 1st Workshop on Stylistic Analysis of Text For Information Access.
    Mooney, R. J., & Roy, Loriene. (2000). Content-Based book recommending using learning for text categorization. Proceedings of the Fifth ACM Conference on Digital Libraries. 195-204.
    O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. 122–129.
    O'Donovan, P., Lībeks, J., Agarwala, A., & Hertzmann, A. (2014). Exploratory font selection using crowdsourced attributes. ACM transactions on graphics (TOG), 33(4), Article No. 92.
    Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. Proceedings of the ACL-02 conference on Empirical methods in natural language processing, 10, 79–86.
    Pang B., & Lee, L. (2004). A Sentimental Education: Sentiment analysis using subjectivity summarization based on Minimum cuts. Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). 271–278.
    Pyle, D.(1999). Data preparation for Data Mining Second Edition. San Fancisco, CA: Morgan Kaufmann.
    Quinlan, J.R. (1986). Induction of decision trees. Machine Learning. 1(1): 81-106.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. Proceedings of the 1994 ACM conference on Computer supported cooperative work. 175-186.
    Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2011). Introduction to recommender systems handbook. Recommender Systems Handbook. Boston, MA: Springer. 1-35.
    Rokach, L., & Maimon, O. (2008). Data mining with Decision Trees: Theory and Applications, Hackensack, NJ: World Scientific Publishing.
    Schein, A. I., Popescul, A., Ungar, L. (2002). Methods and metrics for Cold-Start recommendations. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002). 253–260.
    Shutova, E. (2010). Models of metaphor in NLP. Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, 688–697.
    Stein, R. A., Jaques, P. A., & Valiati, J. F. (2019). An analysis of hierarchical text classification using word embeddings. Information Science. 471, 216-232.
    Stopke, J., & Staley, C. (1994). An eye for type. Ann Arbor: Promotional Perspectives. 1-153.
    The Oxford Companion to the English Language. (1992). Metaphor. The Oxford Companion to the English Language. Oxford, England: Oxford University Press. 653.
    Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. 178–185.
    Vega, M., León, I., & Diaz, J. M. (1996). The representation of changing emotions in reading comprehension. Cognition and Emotion. 10(3), 303-321.
    Van Rijsbergen, C.J.(1979). Information Retrieval. Newton, MA: Butterworth-Heinemann.
    Wang, Z., Yu, S., & Sui, Z. (2010). The Chinese noun metaphors knowledge base and its use in the recognition of metaphors. 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. 03, 186-189.
    Webster's Dictionary (2019). Definition of metaphor. Webster's Dictionary. Retrieved 31 October 2019, from www.merriam-webster.com.
    Wilks, Y. (1978). Making preferences more active. Artificial Intelligence, 11(3), 197–223.
    Wu, C. -H., Chuang, Z. -J., & Lin, Y. -C. (2006). Emotion recognition from text using semantic labels and separable mixture models. ACM Transactions on Asian Language Information Processing, 5(2), 165–183.
    Xavier, A., & Josep, M. P. (2015). Data mining methods for recommender systems. Recommender Systems Handbook Second Edition. Boston, MA: Springer. 237-244.
    Xu, J., Xu, R., Lu, Q., & Wang, X. (2018). Coarse-to-fine sentence-level emotion classification based on the intra-sentence features and sentential context. Proceedings of the 21st ACM international conference on Information and knowledge management. 2455-2458.
    You, Q., Luo, J., Jin, H., & Yang, J. (2016). Cross-modality Consistent Regression for Joint Visual-Textual Sentiment Analysis of Social Multimedia. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. 13-22.
    Zhang, T., Zhang, J., Huo, C. F., & Ren, W. J. (2019). Automatic generation of Pattern-controlled product description in E-commerce. International World Wide Web Conference Committee (2019 IW3C2), 2355-2365.
    Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting stock market indicators through twitter “i hope it is not as bad as i fear”. Procedia-Social and Behavioral Sciences, 26, 55–62.
    Zhu, R., Zhao, K., Yang, H. X., Lin, W., Zhou, C., Ai, B. L., Zhou, Z. R. (2019). AliGraph: A comprehensive graph neural network platform. Proceedings of the VLDB Endowment.12(12), 2094-2105.

    下載圖示
    QR CODE