研究生: |
鍾宜庭 Chung, Yi-Ting |
---|---|
論文名稱: |
一價銠金屬催化具高鏡像選擇性之不對稱串聯反應:合成掌性二氫萘胺 Highly Enantioselective Rhodium(I)-Catalyzed Asymmetric Cascade Reaction: Synthesis of Chiral Dihydronaphthalenamines |
指導教授: |
吳學亮
Wu, Hsyueh-Liang |
口試委員: |
林民生
Hayashi, Tamio 陳建添 Chen, Chien-Tien 吳學亮 Wu, Hsyueh-Liang |
口試日期: | 2023/07/10 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 300 |
中文關鍵詞: | 一價銠金屬催化 、掌性雙環[2.2.1]雙烯配體 、鏡像選擇性 、不對稱串聯合環反應 、乙腈芳基硼酯 、掌性二氫萘胺化合物 |
英文關鍵詞: | rhodium(I)-catalyzed, chiral bicyclo[2.2.1]diene ligands, asymmetric cascade cyclization, enantioselective, arylboronic ester, chiral dihydronaphthalenamine derivatives |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301397 |
論文種類: | 學術論文 |
相關次數: | 點閱:82 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文敘述使用一價銠金屬與掌性雙環[2.2.1]雙烯配體L6a所形成的催化劑,催化𝛽-位具有不同取代基的酯化合物54與不同乙腈芳基硼酯24,進行不對稱串聯合環反應。在最優化條件下,生成一系列具有二氫萘胺結構之環化產物55,共有29個例子,具有最高79%的產率與高達99%的鏡像超越值。此外,以鈀金屬對乙醯基產物58aa的亞胺雙鍵進行氫化反應,可生成具有連續三個掌性中心的產物71,產率、鏡像超越值以及非鏡像異構物比例皆有良好的表現(95% yield, 96% ee, d.r. > 20:1)。
This thesis describes a highly enantioselective cascade cyclization of 𝛽-substituted ester 54 and arylboronate esters 24 in the presence of a rhodium(I)-catalyst prepared in situ from [RhCl(C2H4)2]2 and the chiral bicyclo[2.2.1]heptadiene ligand L6a. Under the optimal conditions, the annulated products 55 with a dihydronaphthalenamine skeleton were generated in up to 79% yield and 99% ee demonstrated in 29 examples. Further hydrogenation of 58aa generated product 71 with three chiral centers in good yield, enantioselectivity value, and diastereomer ratio (95% yield, 96% ee, d.r. > 20:1).
Sharpless, K.B. Angew. Chem. Int. Ed. 2002, 41, 2024–2032.
Shintani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 34, 1294.
Matsuda, T.; Makino, M.; Murakami, M. Chem. Lett. 2005, 34, 1416.
Friedman, A. A.; Panteleev, J.; Tsoung, J.; Huynh, V.; Lautens, M. Angew. Chem. Int. Ed. 2013, 52, 9755–9758. (d) Gourdet, B.; Rudkin, M. E.; Lam, H. W. Org. Lett. 2010, 12, 2554–2557.
Lautens, M.; Marquardt, T. J. Org. Chem. 2004, 69, 4607–4614.
Miura, T.; Murakami, M. Org. Lett. 2005, 7, 3339–3341.
Xue, F.; Hayashi, T. Angew. Chem. Int. Ed. 2018, 57, 10368 –10372.
Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229.
Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M. J. Am. Chem. Soc. 2002, 124, 5052–5058.
Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 2002, 124, 10984-10985.
Navarro, C.; Csákÿ, A. G. Org. Lett. 2008, 10, 217–219.
Cauble, D. F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110-1111.
Youn, S. W.; Song, J.-H.; Jung, D.-I. J. Org. Chem. 2008, 73, 5658–5661.
Miura, T.; Harumashi, T.; Murakami. M. Org. Lett. 2007, 9, 741.
Wu, C.-Y.; Zhang, Y.-F.; Xu, M.-H. Org. Lett. 2018, 20, 1789−1793.
Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 5628-5629.
曾昊葳 (2022)。博士論文,國立臺灣師範大學化學系,臺北,臺灣。
Ueyama, K.; Tokunaga, N.; Yoshida, K.; Hayashi, T. J. Am. Chem. Soc. 2003, 125, 11508–11509.
Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
Syu, J.-F.; Lin, H.-Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 14515–14522.
Perez-Aguilar, J. E.; Chen, C.-Y.; Hughes, J. T.; Fang, C.-Y.; Gates, B. C. J. Am. Chem. Soc. 2020, 142, 11474–11485.
Leuenberger, M.; Ritler, A.; Simonin, A.; Hediger, M. A.; Lochner, M. Chemical Neuroscience 2016, 7, 534–539.
Lam, Y.-P.; Lam, Z.; Yeung, Y.-Y. J. Org. Chem. 2021, 86, 1183–1190.
Kaplaneris, N.; Bisticha, A.; Papadopoulos, G. N.; Limnios, D.; Kokotos, C. G. Green Chemistry 2017, 19, 4451–4456.
Fan, B.; Trant, J. F.; Wong, A. D.; Gillies, E. R. J. Am. Chem. Soc. 2014, 136, 10116–10123.
Schirmer, M.-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Chem. Eur. J. 2016, 22, 2458–2465.
Claridge, T. D. W.; Davies, S. G.; Lee, J. A.; Nicholson, R. L.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Toms, S. M. Org. Lett. 2008, 10, 5437–5440.
Onozawa, T.; Kitajima, M.; Kogure, N.; Takayama, H. J. Org. Chem. 2018, 83, 15312.
Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem. Int. Ed. 2012, 51, 12102–12106.
Candito, D. A.; Dobrovolsky, D.; Lautens, M. J. Am. Chem. Soc. 2012, 134, 15572–15580.
Severin, R.; Mujahidin, D.; Reimer, J.; Doye, S. Heterocycles 2007, 74, 683–700.
Abengózar, A.; García-García, P.; Sucunza, D.; Pérez-Redondo, A.; Vaquero, J. J. Chem. Commun. 2018, 54, 2467–2470.
Buxaderas, E.; Alonso, D. A.; Njera, C. Adv. Synth. Catal. 2014, 356, 3415–3421
Han, J.-Q.; Li, L.-P.; Liu, Y.-T.; Wu, X.; Xie, J.-H.; Yang, F.; Zhou, Q.-L. Org. Lett. 2022, 24, 2590–2595.
Rigby, J. H.; Cavezza, A.; Heeg, M. J. J. Am. Chem. Soc. 1998, 120, 3664–3670
Ni, S.; El Remaily, M. A. E. A. A. A.; Franzén, J. Adv. Synth. Catal. 2018, 360, 4197–4204.
Eleya, N.; Li, S.; Staubitz, A. Org. Lett. 2020, 22, 1624–1627.
Gavardinas, K.; Jadhav, P. K. U.S. Patent Appl. 2009/0163472, A1, 2009.
Dai, Y.; Feng, X.; Liu, H.; Jiang, H.; Bao, M. J. Org. Chem. 2011, 76, 10068–10077.
Sudheendran, K.; Malakar, C. C.; Conrad, J.; Beifuss, U. J. Org. Chem. 2012, 77, 10194–10210.
Blasco, R.; de Arellano, C. R.; Sanz-Cervera, J. F. Org. Prep. Proced. Int. 2017, 49, 265–272.
Rycek, L.; M., M.; Beytlerová, N.; Kotora, M. Org. Lett. 2021, 23, 4511–4515.
Duffy, J. L.; Bao, J.; Ondeyka, D. L.; Tyagarajan, S.; Shao, P.; Ye, F.; Katipally, R.; Finke, P. E.; Zang, Y.; Plotkin, M. A.; Romero, F. A.; Moningka, R.; Hussain, Z. W.O. Patent Appl. 2011/146324, A1, 2011.
Ku, A. F.; Cuny, G. D. J. Org. Chem. 2016, 81, 10062–10070.
Odagi, M.; Yamamoto, Y.; Nagasawa, K. Angew. Chem. Int. Ed. 2018, 57, 2229–2232.
del Río-Rodríguez, R.; Blanco, L.; Collado, A.; Fernández-Salas, J. A.; Alemán, J. Chem. Eur. J. 2022, 28, e2022016.
Lin, J.; Zhang, W.; Jiang, N.; Niu, Z.; Bao, K.; Zhang, L.; Liu, D.; Pan, C.; Yao, X. J. Nat. Prod. 2008, 71, 1938–1941.
He, C.; Ma, F.; Tong, R.; Zhang, W. Org. Lett. 2022, 24, 3499–3503.
Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2014, 53, 10510–10514.
Carter, D. S.; O'Yang, C.; Ford, A. P.; Chen, W. W.O. Patent Appl. 2022/047052, A1, 2022.
Kukosha, T.; Trufilkina, N.; Katkevics, M. Synlett 2011, 2525–2528.
Hsieh, J.-C.; Cheng, A.-Y.; Fu, J.-H.; Kang, T.-W. Org. Biomol. Chem. 2012, 10, 6404–6409.
Hao, X.; Ma, X.; Ren, F.; Wan, Z. W.O. Patent Appl. 2018/205948, A1, 2018.
Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J.-L.; Clot, E.; Baudoin, O. J. Am. Chem. Soc. 2008, 130, 15157–15166.
Zhang, W.; Tao, S.; Ge, H.; Li, Q.; Ai, Z.; Li, X.; Zhang, B.; Sun, F.; Xu, X.; Du, Y. Org. Lett. 2020, 22, 448–452.
Rathore, V.; Sattar, M..; Kumar, R.; Kumar, S. J. Org. Chem. 2016, 81, 9206–9218.
Lawer, A.; Rossi-Ashton, J. A.; Stephens, T. C.; Challis, B. J.; Epton, R. G.; Lynam, J. M.; Unsworth, W. P. Angew. Chem. Int. Ed. 2019, 58, 13942–13947.