研究生: |
陳聖別 Sheng-Pieh Chen |
---|---|
論文名稱: |
摺紙活動對尺規作圖學習之效益研究 -以八年級學生補救教學為例 On the effectiveness of teaching straightedge and compass construction via origami construction to eighth graders in a remedial context |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 203 |
中文關鍵詞: | 摺紙作圖 、尺規作圖 、D分析 |
英文關鍵詞: | origami construction, straightedge and compass construction, D-analysis |
論文種類: | 學術論文 |
相關次數: | 點閱:517 下載:63 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用有趣的摺紙活動學習尺規作圖,是使課室活潑化的方式之一,也能幫助學生克服學習尺規作圖的困難。因此,本研究的目的有三,第一,藉由分析國中教材中的尺規作圖,探討陳宥良(2008)提出的六個摺紙動作是否足夠應付國中教材;第二,編製一套透過摺紙學習尺規作圖的教材,並探討此套教材在認知面向對學生的幫助。第三,探討此課程在情意面向對學生的幫助。
本研究的研究設計採質性研究,為著深入探討本實驗課程的成效,分為兩個部分:第一部分是藉由分析現行國中教科書中所有的尺規作圖題,以找出所有尺規作圖的動作,並發展出能應付所有教科書內尺規作圖的摺紙動作。第二部分乃是根據第一部分的結果,參考設計研究法的精神,編製一套透過摺紙學習尺規作圖的教材,並採前實驗研究法進行教學實驗,對象為苗栗縣某國中6名學生。資料分析參考David Middleton提出的D-analysis進行教學過程分析,再加上前後測結果與質性訪談的內容,探討此教材的有效性。
本研究主要的研究結果如下:
(1)摺紙能幫助學生記憶基本尺規作圖的繪圖步驟。
(2)摺紙能強化學生對稱的概念,且增強他們等距離的直覺。
(3)摺紙能成為學生驗證作圖正確性的工具之一。
(4)摺紙能提供學生解題的想法,特別在「完成線對稱圖形」與「需利用中垂線性質或角平分線性質」兩種題型上尤其明顯。
(5)學生容易利用摺紙動作聯想、理解並記憶尺規作圖動作,並且此種轉換未對學生造成認知負荷。
(6)參與的學生接受並喜愛利用摺紙學習尺規作圖,並且透過摺紙學習能使學生更有興趣學習尺規作圖。
根據本研究的結果,研究者建議可進一步透過較大樣本的教學實驗驗證其有效性,並在較大的班級中利用分組的方式讓學生進行摺紙活動。本研究也發現「過線外一點作平行線」、「等線段作圖」、「等角作圖」對參與的學生而言有相當程度的困難,因此,研究者建議可進一步研究,探討如何有效的幫助學生學習藉由摺紙進行此三種作圖,並從摺紙作圖轉換到尺規作圖。
Learning geometric construction through origami activities is one way to make mathematics lessons more interesting. Could hands-on activities through origami also help students to overcome their difficulties in learning geometric construction? The answer to this question is explored in the present study, which carries three purposes. The first is to investigate whether the six origami operations delineated in Chen (2008) form an adequate system for use at the junior high school level. The second is to design teaching materials that relate origami activities to straightedge and compass construction. Its effectiveness in the cognitive domain will be explored and relevant issues in this regard will be discussed. The third is to discuss the efficacy of such activities in terms of the affective domain.
This study adopted two different process in its research design. The first one involved analyzing the geometric construction contents and problems in Taiwan’s junior high textbooks so as to find out what were covered at the junior high school level. The result from this process was used to develop teaching materials that intended to enhance students learning straightedge and compass construction via origami construction. This is done by way of following principles from design research. A teaching experiment on six participating eighth grade students from the Miao-Li County was conducted according to the pre-experimental design. Data from the teaching experiment were partly analyzed by using D-analysis as proposed by David Middleton, whereas the rest of the results from the pretest, posttest, and interviews were analyzed qualitatively.
Major findings of this study are as follows:
(1)Origami can help students memorize the procedures when constructing geometric figures.
(2)Origami can reinforce students’ conception of symmetry and strengthen their intuition about equivalent length.
(3)Origami can be a useful tool for students to check the validity of a construction procedure.
(4)Origami can provide students with heuristics to solve construction problems, particularly in relation to two formats of problem, namely, those related to completing figures with symmetrical features, and those that involve the construction of perpendicular bisectors or angle bisectors.
(5)It is relatively easy for students to think of, understand, and remember origami construction procedures. They can then relate these procedures to the corresponding straightedge and compass construction procedures. Moreover, such transitions do not impose an extensive amount of cognitive load on the participating students.
(6)The participating students expressed positive acceptance and enjoyment in learning geometric construction through origami activities. Such activities enhanced the students’ interest while they learned geometric construction.
According to the results of this study, it is suggested that the effectiveness of the teaching materials can be tested out in a larger scale study, with the materials introduced to larger classes using small group teaching method. This study found that such tasks as “construct parallel lines through a given point,” “construct a segment of equal length to a given segment,” and “construct an angle of equal magnitude to a given angle” posed a certain degree of difficulty on the participants. Hence it is suggested that more research is necessary regarding how to teach effectively the above mentioned procedures, both in terms of construction by origami as well as transition from origami construction to straightedge and compass construction.
中文部分:
王郁文(2008)。數學史輔助教學法對國二學生數學學習動機影響之研究~以「尺規作圖」為例。國立臺南大學數學教育學系碩士班碩士論文,臺南市。
左台益、陳天宏(2002)。國中生線對稱概念心像之研究。中學教育學報,9,217-260。
吳思圻(2009)。國小五年級學童線對稱之起始概念研究。臺北市立教育大學數學資訊教育教學碩士學位班碩士論文,臺北市。
李國偉(2008)。摺紙與幾何作圖。科學人雜誌,81,34。
宋曜廷、陳慧娟、黃瓅瑩(2009,12月)。不同學習階段兩性數學成就差異之比較研究。論文發表於「中華民國第25屆科學教育學術研討會」,臺北市。
林碧珍、蔡文煥(2005)。TIMSS 2003 臺灣國小四年級學生的數學成就及其相關因素之探討。科學教育月刊,285,2-38。
洪萬生(2008)。尺規作圖-3、4、5、6、15邊形。載於洪萬生(主編),摺摺稱奇:初登大雅之堂的摺紙數學(頁128-135)。臺北市:三民。
洪萬生(2011)。摺摺稱奇:初登大雅之堂的摺紙數學。臺北市:三民。
陳天宏(2002)。國中生線對稱概念學習研究。國立台灣師範大學數學研究所碩士論文,臺北市。
陳玉芬(2005)。從HPM觀點看九年一貫國中數學幾何教材。國立臺北教育大學數學教育研究所碩士論文,臺北市。
陳玉芬(2009)。「尺規作圖」的限制由來與教學上的定位。數食店月刊,29,1-4。
陳宏吉(2007)。「同儕師徒制」對國中數學科低成就學生學習成效影響之行動研究。國立彰化師範大學教育研究所碩士論文,彰化市。
陳建志(2010)。同儕師徒制對國一學生數學學習成效之影響。國立高雄師範大學數學系碩士論文,高雄市。
陳宥良(2008)。探討國中三年級學生透過摺紙活動進行尺規作圖補救教學之成效。國立臺灣師範大學科學教育研究所碩士論文,臺北市。
陳宥良、譚克平、趙君培(2009)。「摺摺」稱奇-從摺紙遊戲學習尺規作圖。科學研習月刊,48(1),33-44。
翁穎哲、譚克平(2008)。設計研究法簡介及其在教育研究的應用範例。科學教育月刊,307,15-30。
徐偉民、饒育宗(2010)。數學領域電腦測驗系統開發與應用:分析高高屏地區六年級學生之七年級數學學習的準備。科學教育研究與發展季刊,59,89-118。
郭毓倫(2008)。國小六年級學童學習高的相關概念研究。臺北市立教育大學數學資訊教育學系數學資訊教育教學碩士學位碩士論文,臺北市。
高熏芳、江玫均(2007)。教育科技領域發展中的研究方法-設計本位研究(Design-Based Research, DBR)之評析。教學科技與媒體,80,4-15。
梁子傑(2005)。幾何原本導讀。臺北市:九章。
教育部(2003)。國民中小學九年一貫課程綱要數學領域。台北市:教育部。
教育部(2008)。國民中小學九年一貫課程綱要數學領域。台北市:教育部。
許湄(2007)。探究式教學法融入幾何尺規作圖單元之行動研究。國立彰化師範大學科學教育研究所碩士論文,彰化市。
張芳全(2009,11月)。影響台灣城鄉國二學生的數學成就因素探討。論文發表於2009台灣教育學術研討會,新竹市。
張祐誠(2007)。激發式動態呈現之教學設計之研究-以文導圖模式與觸發模式之比較以尺規作圖為例。國立交通大學理學院碩士在職專班網路學習學程碩士論文,新竹市。
張衛星(2009)。如何讓學生的數學操作活動更有價值。教育實踐與研究:小學版(A),12,44-46。
曹博盛(2005)。TIMSS 2003 臺灣國中二年級學生的數學成就及其相關因素之探討。科學教育月刊,283,2-34。
彭良禎(2011)。國中基測摺紙與尺規試題彙編。載於洪萬生(主編),摺摺稱奇:初登大雅之堂的摺紙數學(頁72-97)。臺北市:三民。
曾妙玲(2007)。激發式動態呈現教學設計之研究-觸發模式有/無字幕之比較-以尺規作圖為例。國立交通大學應用數學系所碩士論文,新竹市。
曾喬志(2007)。從實物操作、尺規作圖到GSP進行國中幾何推理課題的教學實驗研究。國立彰化師範大學科學教育研究所碩士論文,彰化市。
葉福進(2005)。國三學生利用三種不同構圖工具進行構圖活動的表現之探討。國立臺灣師範大學數學系在職進修碩士班碩士論文,臺北市。
銀林浩(2002)。用摺紙來學數學。臺北市:國際村。
劉仁智(2009)。考量不同多媒體教學設計於尺規作圖對學生學習效益與認知負荷影響之研究。國立臺南大學數位學習科技學系碩士班碩士論文,臺南市。
劉蕙菁(1999)。垂足曲線和反演曲線的尺規作圖。國立清華大學數學系碩士論文,新竹市。
劉繕榜(1999)。國中數學資優生尺規作圖表現之探討。國立臺灣師範大學科學教育研究所碩士論文,臺北市。
盧雪梅、毛國楠(2008)。國中基本學力測驗數學科之性別差異與差別試題功能(DIF)分析。教育實踐與研究,21(2),95-126。
韓結(2006)。從一個悖論入手看幾何作圖的重要性。河北教育(教學版),12,43-44。
謝佳叡(1999)。幾何作圖-「規矩」vs.「規」「矩」。載於洪萬生(主編),摺摺稱奇:初登大雅之堂的摺紙數學(128-135頁)。臺北市:三民。
謝豐瑞(1994)。使幾何教學活潑化-摺紙及剪紙篇。科學教育月刊,171,29-41。
譚克平、陳宥良(2009)。運用摺紙提升學生尺規作圖技巧。科學教育月刊,323,15-24。
英文部分:
Asem, K., Fadua, G., & Tetsuo, I. (2011, March). Origami Axioms and Circle Extension. Paper session presented at the meeting of the 26th Symposium on Applied Computing, Taichung, Taiwan.
Auckly, D., & Cleveland, J. (1995). Totally real origami and impossible paper folding. The American Mathematical Monthly, 102(3), 215-226.
Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of students. Research in Middle Level Education Online, 32(7), 1-12.
Bogomolny, A. (2011). Paper folding geometry from interactive mathematics miscellany and puzzles. Retrieved October 30, 2011, from http://www.cut-the-knot.org/pythagoras/PaperFolding/index.shtml
Coad, L. ( 2006). Paper folding in the middle school classroom and beyond. Australian Mathematics Teacher, 62(1), 6-13.
Cipoletti, B., & Wilson, N. (2004). Turning origami into the language of mathematics. Mathematics Teaching in the Middle School, 10(1), 26-31.
Daniels, H. (2008). Vygotsky and research. New York, NY: Routledge.
Daniels, H. (2011). Analysing trajectories of professional learning in changing workplaces. Culture & Psychology, 17(3), 359-377. doi: 10.1177/1354067X11408137
Gibb, A. A. (1982). Giving students an added edge in constructions. Mathematics Teacher, 75(4), 288-290.
Hansen-Smith, B., Bogomolny, A., Droujkova, M., Droujkov, K., & McAllister, C. (2010). Circle origami axioms. Retrived October 30, 2011, from http://mathfuture.wikispaces.com/Circle+origami+axioms
Hatori , K. (2001). K’s origami: Origami versus straight-edge-and-compass. Retrieved October 3, 2011, from http://origami.ousaan.com/library/conste.html
Huzita, H.(1989). Axiomatic development of origami geometry. Paper session presented at the meeting of the first international meeting of Origami Science and Technology, Ferrara, Italy.
Huse, V. E., Bluemel, N. L., & Taylor, R. H. (1994). Making connections: from paper to pop-up books. Teaching Children Mathematics, 1(1), 14-17.
Justin, J. (1989). Résolution par le pliage de l’équation du troisième degré et applications géométriques. Paper session presented at the meeting of the first international meeting of Origami Science and Technology, Ferrara, Italy.
Johnson, D. A. (1957). Paper folding for the mathematics class. Reston, VA: National Council of Teachers of Mathematics.
Kramer, E., Hadas, N., & Hershkowitz, R. (1986). Geometrical constructions and the microcomputer. Paper session presented at the 10th conference of the international group for the Psychology of Mathematics Education, London, England.
Lang, R. J. (2010). Origami and geometric constructions. Retrieved October 19, 2011, from http://www.langorigami.com/science/math/hja/origami_constructions.pdf
Martin, G. E. (1997). Geometric constructions. New York, NY: Springer.
Middleton, D. (2009). Identifying learning in inter-professional discourse: The development of an analytic protocol. In H. Daniels, A. Edwards, Y. Engeström, T. Gallagher, & S. R. Ludvigsen (Eds), Activity theory in practice: Promoting learning across boundaries and agencies (pp. 90–104). London, England: Routledge.
Olson, A. T. (1975). Mathematics through paper folding. Reston, VA: National Council of Teachers of Mathematics.
Pandiscio , E. A. (2002). Alternative geometric constructions: Promoting mathematical resoning. Mathematics Teacher, 95(1), 32-36.
Pearl, B. (1993). Math in motion: A hands-on creative approach to teaching mathematics in elementary schools using origami. Communicator, 23(1), 10-14.
Perks, P., & Prestage, S. (2006a). The ubiquitous isosceles triangle: Part 1-Constructions. Mathematics in School, 35(1), 2-3.
Perks, P., & Prestage, S. (2006b). The ubiquitous isosceles triangle: Part 2-Circles. Mathematics in School, 35(2), 27-29.
Perks, P., & Prestage, S. (2006c). The ubiquitous isosceles triangle: Part 3-From paper folding to. Mathematics in School, 35(3), 9-11.
Posamentier, A. S. (2003)。神奇數學117(葉偉文,譯)。臺北市:天下文化。
Robertson, J. M. (1986). Geometric constructions using hinged mirrors. Mathematics Teacher, 79(5), 380-386.
Alperin, R. C., & Lang, R. J. (2006). One-, two, and multi-fold origami axioms. Paper session presented at the meeting of the 4th mnternational conference on Origami in Science, Mathematics and Education, Pasadena, CA.
Row, T. S. (1941). Geometric exercises in paper folding (W. W.Beman & D. E. Smith, Trans.). Chicago, IL: Paquin Printers. (Original work published 1893)
Sanders, C. V.(1998). Sharing teaching ideas: geometric constructions: Visualizing and understanding geometry. Mathematics Teacher, 91(7), 554-556.
Wu, J. (2006). Origami: A brief history of the ancient art of paperfolding. Retrieved October 31, 2011, from http://www.origami.as/Info/history.php
Yates, R. C. (1949). Geometrical tool: A mathematical sketch and model book. Saint Louis, MO: Educational Publishers.