簡易檢索 / 詳目顯示

研究生: 羅左財
Tzuoo-Tsair Luo
論文名稱: 晶體工程:多孔性、功能性配位聚合物的自組裝和結構分析
Crystal Engineering: Toward Porous Functional Coordination Networks
指導教授: 蘇展政
Su, Chan-Cheng
呂光烈
Lu, Kuang-Lieh
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 247
中文關鍵詞: 晶體工程微孔性物質自組裝配位聚合物堆積作用氫鍵
英文關鍵詞: crystal engineering, microporous materials, self-assembly, coordination polymers, stacking interactions, hydrogen bonds
論文種類: 學術論文
相關次數: 點閱:430下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文應用晶體工程的策略,採用室溫自組裝法合成十個配位聚合物和一個四核矩形分子化合物。{[Cu3Cl2(4-ptz)4(H2O)2]3DMF5H2O}n (1, 4-H-ptz = 5-(4-pyridyl)tetrazole)是電中性的三維網狀結構,以連接數為八的三銅金屬簇作連結中心,配合直線型的配子4-ptz,是稀有的多孔性體心立方型態結構。{[M2(CA)3][(H3O)2(phz)3]2CH3COCH32H2O }n (M = Cu, 2; M = Cd, 4; M = Zn, 5; M = Co, 6; CA = chloranilate; phz = phenazine)由陰離子性金屬–有機配位層和陽離子性氫鍵–有機層,藉著完美的π–π作用交互堆疊形成三維結構,具有孔徑達8 的一維孔道。在真空下移除化合物2的客分子後,可以得到結構仍然維持完好的化合物{[Cu2(CA)3][(H3O)2(phz)3]}n (3),可以由單晶結構來證明。{[Cd3(CA)3(dptz)2(H2O)2]2THF7H2O}n(7, dptz = 3,6-di-2-pyridyl-
    1,2,4,5-tetrazine)是電中性的二維網狀結構,含有連接數為三和四的兩種節點,並具有兩種大小不同的孔洞。{[Cu2(CA)2(2,2’-bpym)]2DMF}n (8, 2,2’-bpym = 2,2’-bipyrimidine)由電中性的二維網狀結構所堆疊而成,具有達5 的一維孔道。{[Cd6(CA)9](H-1,3-bpp)4(H3O)2(H2O)8
    (CH3CN)4}n(9, 1,3-bpp = 1,3-bis(4-pyridyl)propane)由陰離子性的二維網狀結構所堆疊而成,H-1,3-bpp配子以陽離子的模式存在於孔洞之中,調控了結構的堆疊模式。{[Cd(CA)2]2NH2(CH3)2}n (10) 是三維陰離子性的鑽石型結構,具有三維互穿的孔道系統。在同時的情況下,孔道中的陽離子NH2(CH3)2+ 是由溶劑分子DMF水解反應產生的。[Cd4Cl4(pcaph)4] •4H2O (11, H-pcaph = pyridine-2-carboxylic acid pyridine-2-ylmethylene-hydrazide)是dptz配子在自組裝過程中轉換型態產生新型配子pcaph,並同步形成的四核矩形分子。對於這些化合物的結構,會以X-光單晶繞射法作深入的分析。

    Abstract
    Based on efficient synthetic strategies, ten metal–organic frameworks and one tetranuclear molecular rectangle have been synthesized at ambient temperature by a single-step self-assembly process. The porous bcu-type framework of {[Cu3Cl2(4-ptz)4(H2O)2]3DMF5H2O}n (1) was assembled from 5-(4-pyridyl)tetrazole (4-H-ptz) as a bridging ligand and an eight-connecting tricopper cluster as a building block. This is the first bcu-type structure with an eight-connecting polynuclear metal cluster unit. The crystal structures of {[M2(CA)3][(H3O)2(phz)3]2CH3COCH32H2O }n (M = Cu, 2; M = Cd, 4; M = Zn, 5; M = Co, 6; CA = chloranilate; phz = phenazine)show that the assembly of the isostructural 3D networks is based on a combination of two types of grid-building subunits : an anionic metal–organic coordination honeycomb grid, and a cationic hydronium–ion–mediated organic honeycomb grid. The inorganic and organic honeycomb nets are perfectly π–π stacked, creating a 1D channel with a pore diameter of about 8 . The solid framework retains its rigidity upon removal of the guest molecules under high vacuum to form compound {[Cu2(CA)3][(H3O)2(phz)3]}n (3). The neutral 2D network of {[Cd3(CA)3(dptz)2(H2O)2]2THF7H2O}n (7, dptz = 3,6-di-2-pyridyl-1,2,4,5-tetrazine) consists of three- and four-connected nodes and forms two types of pores. The crystal structure of {[Cu2(CA)2(2,2’-bpym)]
    2DMF}n (8, 2,2’-bpym = 2,2’-bipyrimidine) is based on a neutral metal–organic coordination honeycomb network and contains a 1D channel with a pore diameter of about 5 . The crystal structure of {[Cd6(CA)9](H-1,3-bpp)4(H3O)2(H2O)8(CH3CN)4}n (9, 1,3-bpp = 1,3-bis
    (4-pyridyl)-propane) is composed of an anionic 2D honeycomb layer and tuned by a H-1,3-bpp cation in the pores. The diamiondoid structure of {[Cd(CA)2]2NH2(CH3)2}n (10) contains a 3D intersecting channel system. The guest cation NH2(CH3)2+ was obtained from an in situ hydrolysis reaction of the solvent dimethylformamide. The tetracadmium molecular rectangle of [Cd4Cl4(pcaph)4] •4H2O (11, H-pcaph = pyridine-2-carboxylic acid pyridin-2-ylmethylene-hydrazide) is formed from a single-step self-assembly process. The new type ligand, pcaph, was produced via an in situ ligand transformation reaction at ambient temperature. Their structures have been characterized by single-crystal X-ray analyses.

    目次 中文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅰ 英文摘要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙II 發表論文∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙Ⅲ 表次∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙VI 圖次∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙VIII 第一章 緒論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第一節 研究背景∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1 第二節 自組裝和超分子化學∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4 第三節 金屬–有機配位聚合物和晶體工程∙∙∙∙∙∙∙∙∙∙∙9 第四節 結晶結構分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙38 第五節 展望中的晶體工程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙49 第二章 實驗部分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 第一節 儀器和程式軟體∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙51 第二節 藥品∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙52 第三節 通用的實驗過程∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙54 第四節 合成與鑑定∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙55 第五節 X-光單晶結構解析作業∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙63 第三章 稀有的金屬–有機配位聚合物結構∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79 第一節 簡介∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙80 第二節 結果和討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙85 第四章 含配子CA之多孔性配位聚合物∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙97 第一節 簡介∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙98 第二節 結果和討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙104 第五章 具體的研究成果和未來的研究展望∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙145 第一節 具體的研究成果∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙145 第二節 未來的研究展望∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙146 參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙153 附錄一:磁性分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙173 一、化合物1的磁性分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙173 二、化合物2的磁性分析∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙178 附錄二:其他晶體結構數據資料(含原子位置、熱振動因子 以及鍵長、鍵角等資料)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙183

    參考文獻(References)
    [1] a) M. H. A. Hassan, Science 2005, 309, 65; b) C. Bai, Science 2005, 309, 61.
    [2] a) R. F. Service, P. Szuromi, J. Uppenbrink, Science 2002, 295, 2395; b) J. Alper, Science 2002, 295, 2396; c) R. F. Service, Science 2002, 295, 2398; d) J. M. Lehn, Science 2002, 295, 2400; e) D. N. Reinhoudt, M. Crego-Calama, Science 2002, 295, 2403; f) O. Ikkala, G. ten Brinke, Science 2002, 295, 2407; g) M. D. Hollingsworth, Science 2002, 295, 2410; h) T. Kato, Science 2002, 295, 2414; i) G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418.
    [3] a) J. L Atwood, L. J. Barbour, S. J. Dalgarno, M. J. Hardie, C. L. Raston, H. R. Webb, J. Am. Chem. Soc. 2004, 126, 13170; b) R. M. McKinlay, P. K. Thallapally, G. W. V. Cave, J. L. Atwood, Angew. Chem. Int. Ed. 2003, 44, 5733; c) M. W. Hosseini, Chem. Commun. 2005, 5825.
    [4] G. R. Desiraju, Nature 2001, 412, 397.
    [5] a) J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley , New York, 2000; b) C. Janiak, J. Chem. Soc. Dalton Trans. 2000, 3885.
    [6] a) A. Corma, Chem. Rev. 1997, 412, 2373; b) R. Murugavel, M. G. Walawalkar, M. Dan, H. W. Roesky, C. N. R. Rao, Acc. Chem. Res. 2004, 37, 763; c) A. Corma, M. J. Daz-Cabaas, J. Martnez-Triguero, F. Rey, J. Rius, Nature 2002, 418, 514.
    [7] J. L.C. Rowsell, O. M. Yaghi, Microporous and Mesoporous Materials 2004, 73, 3.
    [8] a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469; b) M. J. Zaworotko, Nature 1999, 402, 242.
    [9] a) H. J. Choi, M. P. Suh, J. Am. Chem. Soc. 2004, 126, 15844; b) R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, S. Horike, M. Takata, J. Am. Chem. Soc. 2004, 126, 14063; c) R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428; d) R. Kitaura, K. Fujimoto, S. Noro, M. Kondo, S. Kitagawa, Angew. Chem. Int. Ed. 2002, 41, 133; e) L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int. Ed. 2000, 39, 1056; f) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762; g) S. Kitagawa, K. Uemura, Chem. Soc. Rev. 2005, 34, 109; h) K. Uemura, R. Matsuda, S. Kitagawa, J. Solid State Chem. 2005, 178, 2420.
    [10] a) M. Avalos, R. Babiano, P. Cintas, J. L. Jimenez, J. C. Palacios, Chem. Commun. 2003, 887; b) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
    [11] a) B. Kessanli, W. Lin, Coord. Chem. Rev. 2003, 246, 305; b) C. D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
    [12] a) T. Duren, L. Sarkisov, O. M. Yaghi, R. Q. Snurr, Langmuir 2004, 20, 2683; b) J. L. C. Rowsell, E. C. Spencer, O. M. Yaghi, Science 2005, 309, 1350; c) J. L. C. Rowsell, J. Eckert, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 14904; d) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi, Science 2003, 300, 1127.
    [13] a) B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745; b) J. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670; c) R. F. Service, Science 2004, 305, 958; d) M. D. Ward, Science 2003, 300, 1104.
    [14] a) G. Frey, Nature 2005, 436, 187; b) R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238.
    [15] O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
    [16] a) O. Kahn, C. J. Martinez, Science 1998, 279, 44; b) M. M. Turnbull, C. P. Landee, Science 2002, 298, 1723.
    [17] Y. H. Liu, H. L. Tsai, Y. L. Lu, Y. S. Wen, J. C. Wang, K. L. Lu, Inorg. Chem. 2001, 40, 6426.
    [18] Y. H. Liu, Y. L. Lu, H. C. Wu, J. C. Wang, K. L. Lu, Inorg. Chem. 2002, 41, 2592.
    [19] a) J. W. Steed, Nature 2000, 406, 943; b) M. Albrecht, M. Lutz, A. L. Spek, G. van Koten, Nature 2000, 406, 970.
    [20] a) T. J. Prior, D. Bradshaw, S. J. Teat, M. J. Rosseinsky, Chem. Commun. 2003, 500; b) S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
    [21] Z. Ni, A. Yassar, T. Antoun, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 12752.
    [22] G. Frey, C. Mellot-Draznieks, C. Serre, F. Millange, Acc. Chem. Res. 2005, 38, 217.
    [23] a) D. Braga, Chem. Commun. 2003, 2751; b) B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
    [24] a) J. D. Dunitz, Chem. Commun. 2003, 545; b) J. A. R. P. Sarma, G. R. Desiraju, Crystal Growth & Design 2002, 2, 93.
    [25] B. Kahr, Crystal Growth & Design 2004, 4, 3.
    [26] B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 2022.
    [27] a) G. Frey, Science 2001, 291, 994; b) G. Frey, Science 1999, 283, 1125; c) H. K. Chae, D. Y. Siberlo-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523; d) S. Kitagawa, M. Kondo, Bull. Chem. Soc. Jpn. 1998, 71, 1739; f) B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629; e) F. A. Cotton, C. Lin, C. A. Murillo, Acc. Chem. Res. 2001, 34, 759; f) C. Janiak, Dalton Trans. 2003, 2781; g) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O. M. Yaghi, J. Solid State Chem. 2000, 152, 3.
    [28] a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705; b) J. S. Siegel, Science 2004, 304, 1256; c) T. T. Luo, H. L. Tsai, S. L. Yang, Y. H. Liu, R. D. Yadav, C. C. Su, C. H. Ueng, L. G. Lin, K. L. Lu, Angew. Chem. Int. Ed. 2005, 44, 6063.
    [29] a) J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 8239; b) N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 1504; c) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
    [30] N. W. Ockwig, O. Delgado-Friedrichs, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2005, 38, 176.
    [31] a) G. R. Desiraju, Acc. Chem. Res. 2002, 35, 565; b) M. D. Ward, Chem. Commun. 2005, 5838.
    [32] a) M. W. Hosseini, Acc. Chem. Res. 2005, 38, 313; b) J. D. Wuest, Chem. Commun. 2005, 5830.
    [33] a) S. Feng, R. Xu, Acc. Chem. Res. 2001, 34, 239; b) J. Y. Lu, Coord. Chem. Res. 2003, 246, 327.
    [34] a) K. T. Holman, A. M. Pivovar, J. A. Swift, M. D. Ward, Acc. Chem. Res. 2001, 34, 107; b) D. Braga, J. Chem. Soc. Dalton Trans. 2000, 3705; c) V. L. Pecoraro, J. J. Bodwin, A. D. Cutland, J. Solid State Chem. 2000, 152, 68; d) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, M. J. Rosseinsky, Acc. Chem. Res. 2005, 38, 273; e) C. Sanchez, G. J. de A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, V. Cabuil, Chem. Mater. 2001, 13, 3061; f) M. OH, G. B. Carpenter, D. A. Sweigart, Acc. Chem. Res. 2004, 37, 1; g) P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
    [35] M. Eddaoudi, J. Kim, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2002, 124, 376.
    [36] a) A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Ct, J. Kim, O. M. Yaghi, J. Am. Chem. Soc. 2005, 127, 7110; b) B. Chen, N. W. Ockwig, F. R. Fronczek, D. S. Contreras, O. M. Yaghi, Inorg. Chem. 2005, 44, 181; c) A. C. Sudik, A. P. Ct, O. M. Yaghi, Inorg. Chem. 2005, 44, 2998.
    [37] a) O. Delgado-Friedrichs, M. D. Foster, M. O’Keeffe, D. M. Proserpio, M. M. J. Treacy, O. M. Yaghi, J. Solid State Chem. 2005, 178, 2533; b) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460; c) S. R. Batten, J. Solid State Chem. 2005, 178, 2475; d) R. Robson, J. Chem. Soc. Dalton Trans. 2000, 3735.
    [38] Some X-ray crystallography textbooks: a) C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, M. Catti, Fundamentals of Crystallography, 2nd ed. Oxford University Press, New York, 2002; b) G. H. Stout and L. H. Jensen, X-ray Structure Determination, 2nd ed. Wiley, U.S.A. 1989; c) J. P. Glusker and K. N. Trueblood, Crystal Structure Analysis A primer, 2nd ed. Oxford University Press, New York, 1985; d) B. D. Cullity, Elements of X-ray Diffraction, 2nd ed. Addison-Wesley Publishing Company, Inc. 1978; e) M. M. Woolfson, An Introduction to X-ray Crystallography, Cambridge University Press, U.K. 1978; f) T. Hahn, International Tables for Crystallography, Brief Teaching Edition of Volume A: Space-Group Symmetry, 5th ed. Kluwer Academic Publishers, the Netherlands, 2002.
    [39] J. L. Atwood, L. J. Barbour, Crystal Growth & Design 2003, 3, 3.
    [40] T. T. Luo, L. Y. Hsu, C. C. Su, C. H. Ueng, K. L. Lu, “Deliberate Design of a 3D Homochiral CuII/L-met/AgI Coordination Network Based on the Distinct Soft-Hard Recognition Principle” Manuscript in preparation, 2005.
    [41] a) M. S. Weiss, R. Hilgenfeld, J. Appl. Crystallogr. 1997, 30, 203; b) R. E. Marsh, Acta Crystallogr. Sect. B 1995, 51, 897.
    [42] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
    [43] P. v.d. Sluis, A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194.
    [44] L. J. Farrugia, J. Appl. Crystallogr. 2003, 32, 837.
    [45] G. M. Sheldrick, SHELX97 and SHELXL97: Soft package for Crystal Structure Determination, University of Gttingen, Germany, 1997.
    [46] Diamond–Crystal and Molecular Structure Visualization Crystal Impact–K. Brandenburg & H. Putz GbR, Postfach 1251, D-53002 Bonn.
    [47] Z. Otwinowsky, W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode. In Methods in Enzymology; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, 1996; Vol. 276, p 307.
    [48] R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33.
    [49] a) M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, J. M. Lehn, Angew. Chem. Int. Ed. 2004, 43, 3644; b) C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 2004, 43, 1466; c) K. T. Holman, A. M. Pivovar, M. D. Ward, Science 2001, 294, 1907; d) M. D. Ward, Science 2003, 300, 1104.
    [50] a) C. Mellot-Draznieks, J. Dutour, G. Frey, Angew. Chem. Int. Ed. 2004, 43, 6290; b) Y. H. Liu, H. C. Wu, H. M. Lin, W. H. Hou, K. L. Lu, Chem. Commun. 2003, 60.
    [51] a) A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York, 1977; b) O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, Acta Crystallogr. Sect. A 2003, 59, 22; c) O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, Acta Crystallogr. Sect. A 2003, 59, 515.
    [52] A few representative examples: a) J. Sun, L. Weng, Y. Zhou, J. Chen, Z. Chen, Z. Liu, D. Zhao, Angew. Chem. Int. Ed. 2002, 41, 4471; b) H. K. Chae, J. Kim, O. D. Friedrichs, M. O’Keeffe, O. M. Yaghi, Angew. Chem. Int. Ed. 2003, 42, 3907; c) S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray, R. Robson, J. Chem. Soc. Dalton Trans. 1999, 2977; d) B. F. Abrahams, M. G. Haywood, R. Robson, D. A. Slizys, Angew. Chem. Int. Ed. 2003, 42, 1111; e) V. Niel, A. L. Thompson, M. C. Munoz, A. Galet, A. E. Goeta, J. A. Real, Angew. Chem. Int. Ed. 2003, 42, 3759; f) Z. Wang, B. Zhang, T. Otsuka, K. Inoue, H. Kobayashi, M. Kurmoo, Dalton Trans. 2004, 2209; g) K. L. Lu, Y. F. Chen, Y. H. Liu, Y. W. Cheng, R. T. Liao, Y. S. Wen, Crystal Growth & Design 2005, 5, 403.
    [53] a) B. Moulton, J. Lu, M. J. Zaworotko, J. Am. Chem. Soc. 2001, 123, 9224; b) D. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schrder, J. Am. Chem. Soc. 2001, 123, 3401.
    [54] a) D. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schrder, Angew. Chem. Int. Ed. 2001, 40, 2443; b) J. Lu, W. T. A. Harrison, A. J. Jacobson, Angew. Chem. Int. Ed. Engl. 1995, 34, 2557; c) J. U. Schutze, R. Eckhardt, R. D. Fischer, D. C. Apperley, N. A. Davies, R. K. Harris, J. Organomet. Chem. 1997, 534, 187; d) H. Chun, D. Kim, D. N. Dybtsev, K. Kim, Angew. Chem. Int. Ed. 2004, 43, 971; e) D. L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, D. M. Proserpio, C. Wilson, M. Schrder, Angew. Chem. Int. Ed. 2004, 43, 1851; f) L. Pan, H. Liu, X. Lei, X. Huang, D. H. Olson, N. J. Turro, J. Li, Angew. Chem. Int. Ed. 2003, 42, 542; g) Q. R. Fang, X. Shi, G. Wu, G. Tian, G. S. Zhu, Y. F. Li, L. F. Wang, C. L. Wang, Y. Chen, Z. D. Zhang, Z. Guo, T. C. Shang, X. H. Cai, S. L. Qiu, Acta Chim. Sinica 2002, 60, 2087.
    [55] a) X. M. Zhang, R. Q. Fang, H. S. Wu, J. Am. Chem. Soc. 2005, 127, 7670; b) D. Li, T. Wu, X. P. Zhou, R. Zhou, X. Z. Huang, Angew. Chem. Int. Ed. 2005, 44, 4175.
    [56] a) Z. R. Qu, H. Zhao, X. S. Wang, Y. H. Li, Y. M. Song, Y. J. Liu, Q. Ye, R. G. Xiong, B. F. Abrahams, Z. L. Xue, X. Z. You, Inorg. Chem. 2003, 42, 7710; b) L. Z. Wang, Z. R. Qu, H. Zhao, X. S. Wang, R. G. Xiong, Z. L. Xue, Inorg. Chem. 2003, 42, 3969; c) R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, Z. L. Xue, Angew. Chem. Int. Ed. 2002, 41, 3800; d) X. Xue, X. S. Wang, L. Z. Wang, R. G. Xiong, B. F. Abrahams, X. Z. You, Z. L. Xue, C. M. Che, Inorg. Chem. 2002, 41, 6544.
    [57] a) L. Carlucci, G. Ciani, D. M. Proserpio, Angew. Chem. Int. Ed. 1999, 38, 3488; b) S. Bhandari, M. F. Mahon, K. C. Molloy, J. S. Palmer, S. F. Sayers, J. Chem. Soc. Dalton Trans. 2000, 1053; c) P. J. van Koningsbruggen, Y. Garcia, H. Kooijman, A. L. Spek, J. G. Haasnoot, O. Kahn, J. Linares, E. Codjovi, F. Varret, J. Chem. Soc. Dalton Trans. 2001, 466; d) A. F. Stassen, M. Grunert, A. M. Mills, A. L. Spek, J. G. Haasnoot, J. Reedijk, W. Linert, Dalton Trans. 2003, 3628; e) C. Jiang, Z. Yu, S. Wang, C. Jiao, J. Li, Z. Wang, Y. Cui, Eur. J. Inorg. Chem. 2004, 3662; f) A. Facchetti, A. Abbotto, L. Beverina, S. Bradamante, P. Mariani, C. L. Stern, T. J. Marks, A. Vacca, G. A. Pagani, Chem. Commun. 2004, 1770; g) J. Tao, Z. J. Ma, R. B. Huang, L. S. Zheng, Inorg. Chem. 2004, 43, 6133.
    [58] a) P. Lin, W. Clegg, R. W. Harrington, R. A. Henderson, Dalton Trans. 2005, 2388; b) T. Wu, B. H. Yi, D. Li, Inorg. Chem. 2005, 44, 4130; c) Q. Ye, Y. H. Li, Y. M. Song, X. F. Huang, R. G. Xiong, Z. Xue, Inorg. Chem. 2005, 44, 3618; d) M. Friedrich, J. C. Glvez-Ruiz, T. M. Klaptke, P. Mayer, B. Weber, J. J. Weigand, Inorg. Chem. 2005, 44, 8044.
    [59] a) F. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2003, 125, 9983; b) F. Himo, Z. P. Demko, L. Noodleman, K. B. Sharpless, J. Am. Chem. Soc. 2002, 124, 12210; c) Z. P. Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945; d) Z. P. Demko, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2113; e) Z. P. Demko, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2110; f) Z. P. Demko, K. B. Sharpless, Org. Lett. 2002, 4, 2525; g) Z. P. Demko, K. B. Sharpless, Org. Lett. 2001, 3, 4091.
    [60] B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559.
    [61] R. Prins, M. Biagini-Cingi, M. Drillon, R.A.G. de Graaff, J. Haasnoot, A. M. Manotti-Lanfredi, P. Rabu, J. Reedijk, F. Ugozzoli, Inorg. Chim. Acta 1996, 248, 35.
    [62] Y. Garcia, P. J. van Koningsbruggen, G. Bravic, D. Chasseau, O. Kahn, Eur. J. Inorg. Chem. 2003, 356.
    [63] S. Kitagawa, S. Kawata, Coord. Chem. Rev. 2002, 224, 11.
    [64] a) K. Nagayoshi, M. K. Kabir, H. Tobita, K. Honda, M. Kawahara, M. Katada, K. Adachi, H. Nishikawa, I. Ikemoto, H. Kumagai, Y. Hosokoshi, K. Inoue, S. Kitagawa, S. Kawata, J. Am. Chem. Soc. 2003, 125, 221; b) M. Kawahara, M. K. Kabir, K. Yamada, K. Adachi, H. Kumagai, Y. Narumi, K. Kindo, S. Kitagawa, S. Kawata, Inorg. Chem. 2004, 43, 92; c) S. Kawata, S. Kitagawa, H. Kumagai, C. Kudo, H. Kamesaki, T. Ishiyama, R. Suzuki, M. Kondo, M. Katada, Inorg. Chem. 1996, 35, 4449; d) M. K. Kabir, M. Kawahara, H. Kumagai, K. Adachi, S. Kawata, T. Ishii, S. Kitagawa, Polyhedron 2001, 20, 1417; e) S. Kawata, S. Kitagawa, H. Kumagai, T. Ishiyama, K. Honda, H. Tobita, K. Adachi, M. Katada, Chem. Mater. 1998, 10, 3902; f) Y. T. Li, C. W. Yan, Y. J. Zheng, D. Z. Liao, Polyhedron 1998, 17, 1423; g) H. Kumagai, S. Kawata, S. Kitagawa, Inorg. Chim. Acta 2002, 337, 387; h) B. F. Abrahams, J. Coleiro, K. Ha, B. F. Hoskins, S. D. Orchard, R. Robson, J. Chem. Soc. Dalton Trans. 2002, 1586; i) T. T. Luo, Y. H. Liu, H. L. Tsai, C. C. Su, C. H. Ueng, K. L. Lu, Eur. J. Inorg. Chem. 2004, 4253.
    [65] a) A. Yoshino, H. Matsudaira, E. Asato, M. Koikawa, T. Shiga, M. Ohba, H. Okawa, Chem. Commun. 2002, 1258; b) T. Scheiring, J. Fiedler, W. Kaim, Organometallics 2001, 20, 1437.
    [66] a) X. H. Bu, H. Liu, M. Du, L. Zhang, Y. M. Guo, Inorg. Chem. 2002, 41, 1855; b) L. Y. Wang, C. X. Du, Y. Q. Fu, Acta Crystallogr. Sect. E 2001, 57, o1237.
    [67] a) B. L. Schottel, J. Bacsa, K. R. Dunbar, Chem. Commun. 2005, 46; b) C. S. Campos-Fernndez, R. Clrac, J. M. Koomen, D. H. Russell, K. R. Dunbar, J. Am. Chem. Soc. 2001, 123, 773; c) C. S. Campos-Fernndez, R. Clrac, K. R. Dunbar, Angew. Chem. Int. Ed. 1999, 38, 3477; d) X. H. Bu, H. Morishita, K. Tanaka, K. Biradha, S. Furusho, M. Shionoya, Chem. Commun. 2000, 971; e) E. C. Constable, C. E. Housecroft, B. M. Kariuki, N. Kelly, C. B. Smith, Inorg. Chem. Commun. 2002, 199.
    [68] a) E. C. Constable, C. E. Housecroft, B. M. Kariuki, N. Kelly, C. B. Smith, C. R. Chimie. 2002, 5, 425; b) E. C. Constable, C. E. Housecroft, B. M. Kariuki, N. Kelly, C. B. Smith, Chem. Commun. 2001, 2134.
    [69] S. A. Barnett, N. R. Champness, Coord. Chem. Rev. 2003, 246, 145.
    [70] a) M. B. Zaman, M. Tomura, Y. Yamashita, J. Org. Chem. 2001, 66, 5987; b) M. B. Zaman, M. Tomura, Y. Yamashita, Org. Lett. 2000, 2, 273.
    [71] a) A. D. Burrows, K. Cassar, R. M. W. Friend, M. F. Mahon, S. P. Rigby, J. E. Warren, CrystEngComm 2005, 7, 548; b) J. He, J. Yu, Y. Zhang, Q. Pan, R. Xu, Inorg. Chem. 2005, 44, 9279; c) L. Xie, S. Liu, B. Gao, C. Zhang, C. Sun, D. Li, Z. Su, Chem. Comm. 2005, 2402; d) W. Chen, J. Y. Wang, C. Chen, Q. Yue, H. M. Yuan, J. S. Chen, S. N. Wang, Inorg. Chem. 2003, 42, 944.
    [72] a) S. Hu, J. C. Chen, M. L. Tong, B. Wang, Y. X. Yan, S. R. Batten, Angew. Chem. Int. Ed. 2005, 44, 5471; b) G. S. Papaefstathiou, Z. Zhong, L. Geng, L. R. MacGillivray, J. Am. Chem. Soc. 2004, 126, 9158; c) N. L. Toh, M. Nagarathinam, J. J. Vittal, Angew. Chem. Int. Ed. 2005, 44, 2237; d) J. Y. Lee, S. J. Hong, C. Kim, Y. Kim, Dalton Trans. 2005, 3716.
    [73] a) K. D. Benkstein, J. T. Hupp, C. L. Stern, Angew. Chem. Int. Ed. 2000, 39, 2891; b) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853; c) Q. H. Yuan, L. J. Wan, H. Jude, P. J. Stang, J. Am. Chem. Soc. 2005, 127, 16279.
    [74] a) E. V. Anokhina, A. J. Jacobson, J. Am. Chem. Soc. 2004, 126, 3044; b) J. J. Zhang, T. L. Sheng, S. M. Hu, S. Q. Xia, G. Leibeling, F. Meyer, Z. Y. Fu, L. Chen, R. B. Fu, X. T. Wu, Chem. Eur. J. 2004, 10, 3963; c) A. D. C. Noord, J. W. Kampf, V. L. Pecoraro, Angew. Chem. Int. Ed. 2002, 41, 4667; d) L. E. Gordon, W. T. A. Harrison, Inorg. Chem. 2004, 43, 1808; e) O. Yamauchi, A. Odani, M. Takani, J. Chem. Soc. Dalton Trans. 2002, 3411; f) C. Kremer, J. Torres, S. Dominguez, A. Mederos, Coord. Chem. Rev. 2005, 249, 567.
    [75] a) S. A. Benner, Acc. Chem. Res. 2004, 37, 784; b) J. P. Garcia-Tern, O. Castillo, A. Luque, U. Garcia-Couceiro, P. Romn, L. Lezama, Inorg. Chem. 2004, 43, 4549; c) C. Switzer, S. Sinha, P. H. Kim, B. D. Heuberger, Angew. Chem. Int. Ed. 2005, 44, 1529; d) M. J. Rauterkus, B. Krebs, Angew. Chem. Int. Ed. 2004, 43, 1300.
    [76] S. Striegler, M. Dittel, Inorg. Chem. 2005, 44, 2728.
    [77] A. V. Trask, W. D. S. Motherwell, W. Jones, Crystal Growth & Design 2005, 5, 1013.
    [78] P. Vishweshwar, J. A. McMahon, M. L. Peterson, M. B. Hickey, T. R. Shattock, M. J. Zaworotko, Chem. Commun. 2005, 4601.
    [79] S. Zhang, Nature Biotechnology 2003, 21, 1171.

    QR CODE