簡易檢索 / 詳目顯示

研究生: 唐婉瑜
Tang, Wan-Yu
論文名稱: 利用STM探討Ru(bpy)2(phen-dione)2+與亞硼酸的電化學環合反應
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 53
中文關鍵詞: 重氮反應原子力顯微術掃瞄穿隧顯微術光磁轉換
英文關鍵詞: Diazotization, AFM, STM, photomagnetism
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.046.2018.B05
論文種類: 學術論文
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成系列釕金屬錯合物Ru(bpy)x(phen-dione)3-x2+ (x: 2, 3),再利用掃瞄穿隧顯微術(STM)探討其與3-氨基苯亞硼酸(APBA)在碳質表面上進行化學反應時的影像變化。實驗結果顯示APBA可經由化學與電化學進行去氮反應,吸附於石墨烯(HOPG)表面。若再對該HOPG施加負電壓,則Ru(bpy)2(phen-dione)2+可與所吸附的APBA進行環合反應,形成奈米薄膜。對於所吸附的Ru(bpy)2(phen-dione)2+,原子力顯微術(AFM)顯示其膜厚度約為13 Å。由於Ru(bpy)2(phen-dione)2+的分子大小約為13.7 Å,我們據此推測該Ru(bpy)2(phen-dione)2+薄膜係以單層吸附方式吸附於石墨烯表面。此外,我們也藉由化學還原修飾法,將APBA與Ru(bpy)2(phen-dione)2+修飾於多壁奈米碳管(MWCNT)表面。當釕金屬錯合物修飾於奈米碳管(簡稱Ru@CNT)後,我們發現其具有光磁轉換性質。若將Ru@CNT置於水面,再以波長473 nm的雷射光進行照射,該碳管會被磁場排斥,朝與磁場相反方向移動。根據這些實驗結果,我們認為Ru@CNT在常溫常壓下具有光磁轉換的性質與應用潛力。

    A series of ruthenium complexes of 1,10-phenanthroline-5,6-dione (denoted phen-dione) and 2,2’-bipyridine (denoted bpy) were synthesized and subjected to STM studies for their reactions with 3-aminophenylboronic acid (APBA) on carbon surfaces. Experimental results showed that when Ru(bpy)x(phen-dione)3-x2+ (x: 2, 3) complexes were brought into contact with APBA that was pre-covalently grafted to highly ordered pyrolytic graphite (HOPG) electrodes through chemical diazotization and electrochemical denitrogenation processes, the ruthenium complexes could be immobilized and therefore formed nanoscale films on the electrodes as the electrodes were biased with negative voltages. The thickness of the ruthenium layers was determined to be around 13 Å. According to the molecular size of the ruthenium complexes (~13.7 Å), we hypothesized that the ruthenium complexes formed monolayer deposition on the APBA-modified electrodes. We also monitored the reactions on multiwalled carbon nanotubes (MWCNT) by depositing APBA and ruthenium complexes on the tubes through chemical reduction processes. The resulting tubes (denoted Ru@CNT) showed photomagnetic signals, rendering them able to migrate oppositely towards external magnets as floating on water under the illumination of a 473-nm laser. These results showed that the synthesized carbon nanotubes could be useful in photomagnetic applications at ambient conditions.

    圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 芳基重氮化合物 1 1-1.1 重氮鹽類的形成 2 1-1.2 重氮鹽類的研究 3 1-2 苯基亞硼酸 5 1-3 含醌之釕錯合物 6 1-4 掃瞄探針顯微術(STM) 8 1-4.1 穿隧效應 9 1-4.2 壓電效應 10 1-4.3 反饋迴路 11 1-4.4 STM的應用 12 1-5 研究動機 13 第二章 實驗方法 14 2-1 實驗藥品 14 2-2 儀器與耗材 15 2-3 Ru(bpy)x(phen-dione)3-x2+ (x: 2, 3)的合成 16 2-3.1 Ru(bpy)32+合成步驟 16 2-3.2 Ru(bpy)2(phen-dione)2+合成步驟 17 2-4 多壁奈米碳管的製備 18 2-4.1 多壁奈米碳管清洗與前處理 18 2-4.2 Ru(bpy)2(phen-dione)2+修飾碳管製備 18 2-5 HOPG電極的製備 19 2-5.1 HOPG電極 19 2-5.2 Ru(bpy)2(phen-dione)2+|APBA|HOPG修飾電極製備 20 2-6 STM之Pt/Ir探針製備 21 2-7 掃瞄式穿隧顯微鏡(STM)操作參數 22 2-8 原子力顯微鏡(AFM)操作參數 23 2-8.1 Tapping模式 23 2-8.2 Magnetic模式 23 2-8.3 Contact模式 24 第三章 實驗結果與討論 26 3-1 Ru(bpy)2(phen-dione)2+之基本性質 26 3-2 SEM分析Ru│APBA│CNT化學合成修飾奈米碳管 28 3-3 Ru│APBA│CNT光磁性探討 30 3-4 循環伏安法分析修飾電極之表面 32 3-5 AFM影像分析 37 3-5.1 刮除法中刮除次數最佳化探討 37 3-5.2 APBA|HOPG刮除實驗 38 3-5.3 Ru|APBA|HOPG刮除實驗 40 3-6 STM影像分析 43 第四章 結論 48 第五章 未來展望 49 第六章 參考文獻 50

    [1] A. Bergen, S. R. Morel, T. L. Saux, H. Ihmels and D. Baigl, Nano Lett. 2016, 16, 773-780.
    [2] S. Kundu and A. Patra, Chem. Rev. 2017, 117(2), 712-757.
    [3] M. Husham and Z. Hassan, J. Nanoelectron. Optoelectron. 2015, 10(6), 783-789(787).
    [4] P. C. Mondal, P. Roy, D. Kim, E. E. Fullerton, H. Cohen and R. Naaman, Nano Lett. 2016, 16, 2806-2811.
    [5] W. S. Lin, Y.-H. Han, T.-Y. Chang, C. M. Wang, C.-H.-T. Chang and J.-S. Tsay, J. Phys. Chem. C 2015, 119, 20673-20680.
    [6] S.-W. Wu, H. Y. Huang, Y. C. Guo and C. M. Wang, J. Phys. Chem. C 2008, 112, 9370-9376.
    [7] M. Delamar, R. Hitmi, J. Pinson and J. M. Savéant, J. Am. Chem. Soc. 1992, 114, 5883-5884.
    [8] D. G. Hall, Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, Wiley-VCH, New York, NY, USA, 2005.
    [9] K. Lacina, P. Skl´adal and T. D. James, Chem. Cent. J. 2014, 8, 60-77.
    [10] N. Plesu, A. Kellenberger, I. Taranu, B. O. Taranu and I. Popa, React. Funct. Polym. 2013, 73, 772-778.
    [11] C. M. Wang, S.-Y. Chung, H.-J. Jao and W.-H. Hung, the J. Phys. Chem. C 2010, 115, 1978-1984.
    [12] K. Morita, N. Hirayama, H. Imura, A. Yamaguchi and N. Teramae, J. Electroana. Chem. 2011, 656, 192-197.
    [13] A. Adenier, N. Barré, C.-D. E., C. A., G. S., F. Mercier, J. Pinson and C. Vautrin-Ul, Surface Science 2006a, 600, 4801-4812.
    [14] C. A. Dyke and J. M. Tour, Nano Lett. 2003, 3, 1215-1218.
    [15] R. K. V. K. and K. R. Gopidas, Chem. Asian J. 2010, 5, 887-896.
    [16] V. K. Ratheesh Kumar and K. R. Gopidas, Tetrahedron Lett. 2011, 52, 3102-3105.
    [17] A. Mesnage, M. Abdel Magied, P. Simon, N. Herlin-Boime, P. Jégou, G. Deniau and S. Palacin, J. Mater. Sci. 2011, 46, 6332-6338.
    [18] M. C. Bernard, A. Chaussé, E. Cabet-Deliry, M. M. Chehimi, J. Pinson, F. Podvorica and C. Vautrin-Ul, Chem. Mater. 2003, 15, 3450-3462.
    [19] P. R. Marcoux, P. Hapiot, P. Batail and J. Pinson, New J. Chem. 2004, 28, 302-307.
    [20] A. Adenier, M. C. Bernard, M. M. Chehimi, E. Cabet-Deliry, B. Desbat, O. Fagebaume, J. Pinson and F. Podvorica, J. Am. Chem. Soc. 2001, 123, 4541-4549.
    [21] T. Matrab, M. N. Nguyen, S. Mahouche, P. Lang, C. Badre, M. Turmine, G. Girard, J. Bai and M. M. Chehimi, J. Adhes. 2008, 84, 684-701.
    [22] Y. Pan, B. Tong, J. Shi, W. Zhao, J. Shen, J. Zhi and Y. Dong, The J. Phys. Chem. C 2010, 114, 8040-8047.
    [23] S. A. Dahoumane, Nguyen, M. N., Thorel, A., Boudou, J. and C. P., M. M., & Mangeney, C., Langmuir 2009, 25, 9633-9638.
    [24] F. Mirkhalaf, Mason, T. J., Morgan, D. J., & Saez, V., Langmuir 2011, 27, 1853-1858.
    [25] J. L. Bahr and J. M. Tour, Chem. Mater. 2001, 13, 3823-3824.
    [26] J. Liu, Rodriguez i Zubiri, M., Vigolo, B., Dossot, M., Hum- and B. bert, Fort, Y., & McRae, E., J. Nanosci. Nanotechno. 2007, 7, 3519-3523.
    [27] M. Pandurangappa, Ramakrishnappa, T., & Compton, R. G., Carbon 2009, 47, 2186-2193.
    [28] N. Miyaura and A. Suzuki, J.C.S. Chem. Comm. 1979, 866-867.
    [29] R. Nishiyabu, Y. Kubo, T. D. James and J. S. Fossey, Chem. Commun. 2011, 47, 1124-1150.
    [30] L. Wang, J. Zhang, B. Kim, J. Peng, S. N. Berry, Y. Ni, D. Su, J. Lee, L. Yuan and Y.-T. Chang, J. Am. Chem. Soc. 2016, 138, 10394-10397.
    [31] T. Wang, N. Zhang, K. Zhang, J. Dai, W. Bai and R. Bai, Chem. commun. 2016, 52, 9679-9682.
    [32] F. H. Burstall, J. Chem. Soc. 1936, 173-175.
    [33] N. E. Tokel and A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862-2863.
    [34] C. A. Goss and H. D. Abruna, Inorg. Chem. 1985, 24, 4263-4267.
    [35] M. V. d. Pozo, C. Alonso, F. Pariente and E. Lorenzo, Anal. Chem 2005, 77, 2550-2557.
    [36] C. Deegan, B. Coyle, M. McCann, M. Devereux and D. A. Egan, Chem. Biol. Interact. 2006, 164, 115-125.
    [37] C.-C. Wang, J. W. Hennek, A. Ainla, A. A. Kumar, W.-J. Lan, J. Im, B. S. Smith, M. Zhao and G. M. Whitesides, Anal. Chem. 2016, 88, 6326-6333.
    [38] P. Prakash, S. Gokulakrishnan and H. Prakash, Sep. Purif. Technol. 2013, 109, 9-17.
    [39] G. Binning, H. Rohrer, C. Gerber and E. Weibel, Phys. Rev. Lett. 1982, 49, 57-61.
    [40] J. Curie and P. Curie, Bulletin de la Societe de Minerologique de France 1880, 3, 90-93.
    [41] D. M. Eigler and E. K. Schweizer, Nature 1990, 344, 524-526.
    [42] P. Avouris and I. W. Lyo, Surface Science 1991, 242, 1-11.
    [43] H. S. Wong, C. Durkan and N. Chandrasekhar, Nano 2009, 3, 3455-3462.
    [44] F. D. Natterer, K. Yang, W. Paul, P. Willke, T. Choi, T. Greber, A. J. Heinrich and C. P. Lutz, Nature 2017, 543, 226-228.
    [45] M. Inaba, T. Doi, Y. Iriyama, T. Abe and Z. Ogumi, J. Power Sources 1999, 81-82, 554-557.
    [46] H. V. Gorp, P. Walke, A. M. Bragança, J. Greenwood, O. Ivasenko, B. E. Hirsch and S. D. Feyter, Appl. Mater. Inter. 2018, 10, 12005-12012.
    [47] M. Delamar, G. Désarmot, O. Fagebaume, R. Hitmi, J. Pinson and J. M. Savéant, Carbon 1997, 35, 801-807.

    下載圖示
    QR CODE