研究生: |
張文菘 Jhang, Wun-Song |
---|---|
論文名稱: |
桃園地區土地利用變遷與影響因素之空間分析 A Spatial Analysis of Landuse Change and Influencing Factors in Taoyuan Area |
指導教授: |
張國楨
Chang, Kuo-Chen |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 桃園 、土地利用變遷 、空間效應 、空間延遲模型 、地理加權迴歸 |
英文關鍵詞: | Taoyuan, landuse change, spatial effects, Spatial Lag Model, Geographically Weighted Reg |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:31 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業區開發與交通建設吸引大量人口移入,使桃園縣近年發展迅速,並帶動土地利用變遷。受歷史、政治脈絡影響,呈現北桃園、南中壢的雙元發展特性。然而過往土地利用變遷研究多忽略地理分布現象所具有的空間特性,使模式推導產生偏誤,對此空間統計方法的創新有助於處理此類空間效應問題。本研究目的在於瞭解桃園地區建成地變遷的分布型態與影響因素,並檢視空間效應的影響。先以空間自相關指標偵測建成地分布與變遷的空間型態;進一步利用空間延遲模型與地理加權迴歸探討建成地變遷之影響因素,以及空間延遲相依、空間異質性的作用效力。
研究結果顯示,桃園地區於1995-2006年間建成地大量增加,相對的農業用地流失迅速。建成地分布以桃園市、中壢市為核心,近年在中壢平鎮市區外圍、桃園市區外圍、龜山公西地區發展最快。整體上鄰近村里建成地發展較快、人口與工商業員工成長、位於市區外圍、近交流道、位於都市計畫區或工業區內,工業用地比例較少,空置地及農業用地比例較多的村里,有較高的建成地開發可能性。在空間效應方面,多元線性迴歸中存在空間延遲相依與空間異質性,分別能夠過空間延遲模型與半參數地理加權迴歸有效地修正二者衍生的模型偏誤,並提升模型適配度。由半參數地理加權迴歸的局部迴歸係數得知,人口密度變遷與三級產業員工成長在桃園市北區、蘆竹鄉、龜山鄉、大園鄉等地對建成地變遷有較高的影響性;二級產業員工成長的效應侷限於沿海地區;原工業用地比例於桃園市、八德市負向效應最大;與交流道距離僅在林口、中壢、內壢、大湳等特定交流道周邊有較高影響性;與火車站距離、原農業用地比例、原空置地比例三者在桃園市區、八德市、中壢平鎮市區等核心區域佔關鍵。總體而言,桃園地區建成地變遷因素具有明顯的南北、城鄉差異性。
A large amount of immigration attracted by the development of industrial areas and transportation construction causes Taoyuan County to develop rapidly, and leads landuse changes. Influenced by historical and political context, it shows dual developmental traits of Taoyuan City in the north and Chungli City in the south. However, most research on the landuse changes in the past neglects spatial traits of phenomena of geographical distribution, which causes bias against derivation of patterns. The innovation in ways of the spatial statistics helps to handle such problem of spatial effects. The purpose of this research is to help everyone understand the distribution patterns and the influencing factors of the changes of the build-up areas in Taoyuan district, and examine the influence the spatial effects have. This study used spatial autocorrelation index to detect the distribution of the build-up areas and the changes of the spatial patterns; furthermore, we used Spatial Lag Model and Geographically Weighted Regression to probe into the influencing factors of the changes of the build-up areas, and the effectiveness of spatial lag dependence and spatial heterogeneity.
The result of the research shows that the build-up areas increased dramatically in Taoyuan area from 1995 to 2006, and the agricultural land of the counterparts eroded fast. Taoyuan City and Chungli City are the cores of the distribution of the build-up areas, and in recent years the districts have developed fastest in peri-urban areas of Chulgli-Pingzhen as well as in peri-urban areas of Taoyuan City, and Gongsi, Guishan. Overall, the villages listed below have stronger possibility of developing the build-up areas: villages of the build-up areas developing faster neighbour villages, of population and employee growth of business, in peri-urban areas, near interchanges, and in urban planning areas or industrial areas; villages of smaller proportion of industrial land; villages of more vacant land and agricultural land. In the spatial effects, the spatial lag dependence and spatial heterogeneity exist in multiple linear regressions, which can effectively correct the derivative bias in pattern respectively with the Spatial Lag Models and Semiparametric Geographically Weighted Regression, and elevate goodness of fit of models. We can know from local regression coefficient of Semiparametric Geographically Weighted Regression that, the changes of population density and growth of employees of tertiary sector in such areas as the northern part of Taoyuan City, Luzhu Township, Guishan Township, Dayuan Township, have higher impact to the changes of built-up area; effects of growth of employees of secondary sector are confined to coastal districts; the proportion of negative effects is the largest in original industrial land of Taoyuan City and Bade City; the changes of build-up areas have higher impact on the distance from interchanges—only around specific interchanges, such as Linkou, Chungli, Neili, Danan—; the distance form train stations, the proportion of original agricultural land, and the proportion of original vacant land, these three in such core areas as Taoyuan City, Bade City, Chulgli-Pingzhen City, are key to the changes of the build-up areas. In totality, the factors of the changes of build-up areas in Taoyuan area show great differences between the north and south, as well as urban and rural.
Keywords: Taoyuan, landuse change, spatial effects, Spatila Lag Model, Geographically Weighted Regression
一、中文文獻
丁志堅 (2002)。屏東平原土地利用變遷分析與模式建立。國立台灣大學地理環境資源研究所,博士論文。
王翠華 (2007)。基隆河中上游流域聚落變遷型態之分析。台灣大學地理環境資源學系,碩士論文。
白仁德 (2000)。高速公路及工業區對台灣西部走廊製造業空間分布影響模型之建立。台灣大學建築與城鄉研究所,博士論文。
朱建銘 (2000)。土地利用空間型態之研究。國立台灣大學地理環境資源研究所,碩士論文。
吳振發、林裕彬 (2006)。〈汐止市土地利用時空變遷模式〉。《都市與計畫》,卷33,期3,231-259。
李瑞陽、陳勝義 (2010)。〈台中市搶奪犯罪熱點與犯罪區位之空間分析〉。《地理研究》,期53,23-47。
沈体雁、馮等田、孫鐵山 (2010)。《空間計量經濟學》。北京:北京大學出版社。
周孟嫻、紀玉臨、謝雨生 (2010)。〈台灣自殺率具空間群聚嗎?模仿效應或結構效應〉。《人口學刊》,期41,1-65。
宓群英 (2007)。桃園地區土地覆蓋變遷之研究。國立台北大學都市計畫研究所,碩士論文。
林雅雯 (2012)。桃園縣八德市的都市發展特色─以城鄉邊緣區的角度探討。國立臺灣師範大學地理學系,碩士論文。
洪志明 (2011)。空間次市場中明星學區之不動產價格分析─以台北市為例。國立臺北大學不動產與城鄉環境學系,碩士論文。
紀玉臨、周孟嫻、謝雨生 (2009)。〈臺灣外籍新娘之空間分析〉。《人口學刊》,期38,67-113。
胡立諄、賴進貴 (2006)。〈臺灣女性癌症的空間分析〉。《台灣地理資訊學刊 》,期4,39-55。
唐菁萍 (2005)。桃園市與中壢市都市發展及機能的比較。國立台灣師範大學地理系在職進修碩士班,碩士論文。
張國楨、張文菘、曾露儀 (2012)。〈都市土地利用與人口老化對基層醫療資源分布之影響:以台北市為例〉。《地理研究》,期56,25-40。
張曜麟 (2005)。都市土地使用變遷之研究。國立成功大學都市計畫研究所,博士論文。
連美綺 (2011)。桃園海岸地區土地利用時空變遷。國立臺灣師範大學地理學系,碩士論文。
陳章瑞 (2009)。運用地理加權迴歸模型探討都市公園之鄰里效應。中國文化大學建築及都市計畫研究所,博士論文。
陳雪玉 (2003)。桃園閩客族群與地方政治關係的歷史探討(1950-1996)。國立中央大學歷史研究所,碩士論文。
陳惠玲 (2010)。應用空間統計探討農業用地變遷與影響因素。國立臺北大學都市計劃研究所,碩士論文。
陳斐 (2008)。《區域空間經濟關聯模式分析:理論與實證研究》。北京:中國社會科學出版社。
陳菁瑤、洪志明 (2009)。〈租稅競爭與標竿式競爭〉。《經濟與管理叢論》,卷5,期1,55-82。
曾繁浩 (1995)。桃園地區都市及區域發展之研究。中國文化大學地學研究所,碩士論文。
黃國慶、詹士樑 (2009)。〈台北都會區土地使用/覆蓋變遷驅動力之空間近鄰效果探討〉。《都市與計畫》,卷36,期4,415-443。
楊書婷 (2008)。空間異質性對土地利用變遷模式的影響 新竹市個案研究。台灣大學地理環境資源學系,碩士論文。
鄒克萬、張曜麟 (2004)。〈都市土地使用變遷空間動態模型之研究〉。《地理學報》,期35,35-51。
劉佳玲 (2007)。新竹地區建地土地利用變遷模式之建立。台灣大學地理環境資源學系,碩士論文。
劉其輝 (2005)。結合遙測與地理資訊系統於都市發展之研究─以桃園縣 (復興鄉除外) 為例。國立政治大學地政學系,碩士論文。
蔡博文 (2005)。〈土地變遷研究之回顧與展望〉。《全球變遷通訊雜誌》,期48,21-24。
賴如崧 (1987)。桃園及宜蘭兩縣雙中心發展之政經比較分析。中國文化大學政治研究所,碩士論文。
賴進貴、葉高華、王韋力 (2004)。〈土地利用變遷與空間相依性之探討─以臺北盆地聚落變遷為例〉。《台灣地理資訊學刊》,期1,29-40。
謝啟賢 (2007)。養殖土地利用變遷預測模式之建立-個體施為取徑。台灣大學地理環境資源學系,碩士論文。
鍾志章 (1979)。桃園台地都市體系之研究。國立臺灣師範大學地理研究所,碩士論文。
簡志雄 (1985)。桃園縣都市體系發展之研究。中國文化大學地學研究所,碩士論文。
顏子揚 (2006)。捷運沿線土地使用變遷模擬模式之建構與應用。國立交通大學交通運輸研究所,碩士論文。
魏哲勛 (2011)。後工業化時期都市跳島發展之研究─以桃園縣南崁交流道周邊地區為例。私立東海大學建築學系,碩士論文。
二、英文文獻
Anselin, L. (1988a). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic.
Anselin, L. (1995). Local indicator of spatial association─LISA. Geographical Analysis, 27(2), 93-115.
Anselin, L. (1998). Exploratory spatial data analysis in a geocomputational environment. Longley, P. A., Brooks, S. M., and McDonnell, R. et al., Geocomputation: A Primer. New York: Wiley.
Anselin, L. (1988b). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 1-17.
Anselin, L., Bera, A. K., Florax, R., and Yoon, M. J. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26, 77-104.
Anselin, L. and Florax, R. (1995). New directions in spatial econometrics. Berlin: Springer-Verlag.
Anselin, L., and Griffith, D. A. (1988). Do spatial effects really matter in regression analysis?. Papers of the Region Science Association, 65, 11-34.
Anselin, L., and Rey, S. (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23(2), 112-131.
Baller, R. D., Anselin, L., Messner, S. F., Deane, G., and Hawkins, D. F. (2001). Structural covariates of U.S. county homicide rates: Incorporating spatial effects. Criminology, 39(3), 561-590.
Bitter, C., Mulligan, G. F., and Dall'erba, S. (2007). Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. Geographical System, 9(1), 7-27.
Briassoulis, H. (2000). Analysis of land use change: theoretical and modeling approaches. Regional Research Institute, West Virginia University.
http://www.rri.wvu.edu/WebBook/Briassoulis/contents.htm (2011/11/13)
Briassoulis, H. (2001). Policy-oriented integrated analysis of land-use change: An analysis of data needs. Environmental Management, 27(1), 1-11.
Brunsdon, C., Fotheringham, A. S., and Charlton, M. (1999). Some notes on parametric significance tests for geographically weighted regression. Regional Science, 36(3), 497-524.
Burridge, P. (1980). On the Cliff-Ord test for spatial correlation. Journal of the Royal Statistical Society B, 42(1), 107-108.
Casetti, E. (1972). Generating models by the expansion method: Applications to geographical research. Geographical Analysis, 4(1), 81-91.
Cheng, J., and Masser, I. (2003). Urban growth pattern modeling: a case study of Wuhan city, PR China. Landscape and Urban Planning, 62, 199-217.
Clarke, K. C., and Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. Geographical Information Science, 12(7), 699-714.
Clawson, M., and Stewart C. L. (1965). Land use information : critical survey of US statistics including possibilities for greater uniformity. Baltimore, Md.: Johns Hopkins Press.
Clement, F., Orange, D., Williams, M., Mulley C., and Epprecht, M. (2009). Divers of afforestation in Northern Vietnam: Assessing local variations using geographically. Applied Geography, 29, 561-576.
Cliff, A. D., and Ord, J. K. (1973). Spatial Autocorrelation. London: Pion.
Foster, S. A., and Gorr, W. L. (1986). An adaptive filter for estimating spatially-varying parameters: Application to modeling police hours spent in response to calls for service. Management Science, 32(7), 878-889.
Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression: the analysis of spatially vary relationships. West Sussex: John Wiley and Sons Ltd.
Fotheringham, A. S., Charlton, M., and Brunsdon, C. (1996). The geography of parameter space: an investigation of spatial non-stationarity. Geographical Information Systems, 10(5), 605-627..
Fotheringham, A. S., Charlton, M. E., and Brunsdon, C. (1997). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30, 1905-1927.
Fotheringham, A. S., Charlton, M., and Brunsdon, C. (1998). Geographically weighted regression a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30, 1905-1927.
Fox, J., Rindfuss, R. R., Walsh, S. J., and Mishra, V. (2002). People and the environment: Approaches for linking household and community surveys to remote sensing and GIS. Boston: Kluwer Academic Publishers.
Getis, A., and Ord, J. K. (1992). The Analysis of Spatial Association by the Use of Distance Statistic. Geographical Analysis, 24, 189-206.
Goldstein, H. (1987). Multilevel models in education and social research. USA: Oxford University Press.
Huang, S.-L., Wang, S.-H., and Budd, W. W. (2009). Sprawl in Taipei's peri-urban zone: Responses to spatial planning and implications for adapting global environmental change. Landscape and Urban Planning, 90, 20-32.
Hurvich, C. M., Simonoff, J. S., and Tsai, C-L (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 60(2), 271-293.
Kamusoko, C., Aniya, M., Adi, B., and Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe – Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435-447.
Lambin, E. F., Baulies, X., Bockstael, N., Fischer, G., Krug, T., Leemans, R., Moran, E. F., Rindfuss, R. R., Sato, Y., Skole, D., Turner II, B. L., and Vogel, C. (1999). Land-use and land-cover change (LUCC) implementation strategy. IGBP Report No.48, HDP Report No.10.
Ligtenberg, A., Wachowicz, M., Bregt, A. K., Beulens, A., and Kettenis, D. L. (2004). A design and application of a multi-agent system for simulation of multi-actor spatial planning. Environmental Management, 72, 43-55.
Lin, C.-H., and Wen, T.-H. (2011). Using Geographically Weighted Regression (GWR) to explore spatial varying relationship of immature mosquitoes and human densities with the incidence Dengue. Environmental Research and Public Health, 8, 2798-2815. ISSN: 1660-4601.
Long, Y. (2010). Establishing urban growth boundaries using geosimulation for land use control. Paper presented at 46th ISOCARP Congress, Nairobi, Kenya.
Luo, J., and Wei, Y. H. (2009). Modeling spatial variations of urban growth pattern in Chinese cities: The case of Nanging. Landscape and Urban Planning, 91, 51-64.
Matthews, S. A., and Yang, T. C. (2012). Mapping the results of local statistics: Using geographically weighted regression. Demographic Research, 26(6), 151-166.
McDonald, R. I., and Urban, D. (2006). Spatially varying rules of landscape change: lessons from a case study. Landscape and Urban Planning, 74, 7-20.
Mennis, J. (2006). Mapping the results of geographically weighted regression. The Cartographic Journal, 43(2), 171-179.
Nakaya T. (2012). GWR4 User Manual: Windows application for geographically weighted regression modelling. GWR4 Development Team.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., and Deadman, P. (2003). Multi-agent systems for the simulation of land use and land cover change: A eeview. Annals of the Association of American Geographers, 93(2), 314-337.
Partridge, M. D., Rickman, D. S., Ali, K., and Olfer, M. R. (2006). The geographic diversity of U.S. nonmetropolitan growth dynamics: A geographically weighted regression approach. Land Economic, 84(2), 241-266.
Piyathamrongchai, P., and Batty, M. (2007). Integrating cellular automata and regional dynamics using GIS. Koomen, E., Stillwell, J., and Bakema, A. et al.. Modelling land-use change. Netherlands: Springer.
Su, S., Xiao, R., and Zhang, Y. (2012). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32(2), 360-375.
Swamy, P. A. V. B. (1970). Efficient inference in a random coefficient regression model. Econometrica, 38(2), 331-323.
Tian G., Liu, J., Xie Y., Yang, Z., Zhuang, D., and Niu, Z. (2005). Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS. Cities, 22(6), 400-410.
Tobler, W. R. (1970). A computer model simulation of urban growth in the Detroit region. Economic Geography, 46(2), 234-240.
Turner II, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., and Leemans. R. (1995). Land-use and land-cover change: Science/research plan. IGBP Report No.35, HDP Report No.7.
Veldkamp, A., Verburg, P. H., Kok, K., de Koning, G. H. J., Priess, J., and Bergsma, A. R. (2001). The need for scale sensitive approaches in spatially explicit land use change modeling. Environmental Modeling and Assessment, 6, 111-121.
Verburg, P. H., Schot P. P., Dijst, M. J., and Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61, 309-324.
Wheeler, D., and Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Geographical Systems, 7, 161-187.