簡易檢索 / 詳目顯示

研究生: 嚴孟城
Yen, Meng-Cheng
論文名稱: 室溫單層分佈 CsPbBr3 量子點塔米電漿激子極化子之特性研究
Room-temperature Tamm-plasmon exciton-polaritons observed in CsPbBr3 quantum dots with a monolayer distribution
指導教授: 李亞儒
Lee, Ya-Ju
口試委員: 李亞儒
Lee, Yu-Ju
張俊傑
Chang, Chin -Chieh
楊斯博
口試日期: 2021/08/23
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱注入合成法鈣鈦礦量子點布拉格反射鏡塔米電漿極化子凝聚態
英文關鍵詞: Hot injection synthesis, perovskite quantum dot, distribution Bragg reflector, Tamm plasmons structure, polariton condensate
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101273
論文種類: 學術論文
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗運用熱注入法所合成的鈣鈦礦量子點來作為增益介質,再與經過設計 的塔米電漿結構做結合,主要目的是為了達到形成塔米電漿子垂直型共振腔雷射 (VCSEL)。透過 355 nm, 50 ps 重複率 1k 的脈衝雷射作為激發光源來激發鈣鈦礦 量子點,藉由將單層之鈣鈦礦量子點嵌入塔米電漿共振腔所產生低反射的特徵模 態,也藉由塔米電漿共振腔產生的局域性強電場來增強鈣鈦礦量子點發光效率。 又使當鈣鈦礦量子點所激發出的光子與材料中的激子因特徵模態的限制從而產 生強耦合機制而展現了同時都身為玻色子所具有的凝聚現象時,產生與雷射相同 特性的低閥值高 Q 值(Quality factor)的同調光。

    In this experiment, the perovskite quantum dots synthesized by the thermal injection method are used as the gain medium, and then combined with the designed Tami plasma structure. The main purpose is to form a Tami plasma vertical resonant cavity laser (VCSEL). The perovskite quantum dots are excited by 355 nm, 50 ps repetition rate 1k pulse laser as the excitation light source. By embedding single- layer perovskite quantum dots into the Tami plasma resonance cavity, the characteristic mode of low reflection is produced. The luminous efficiency of perovskite quantum dots is also enhanced by the strong local electric field generated by the Tami plasma resonance cavity. And when the photons excited by the perovskite quantum dots and the excitons in the material exhibit a strong coupling mechanism due to the limitation of the characteristic mode, and exhibit the condensation phenomenon that both are bosons at the same time, there will be a collision with thunder. Simultaneous dimming with low threshold and high Q value (Quality factor) with the same characteristics.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 第一章緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 基本原理及文獻回顧 4 2.1 分散式布拉格反射鏡 (Distributed Bragg mirror, DBR) 4 2.2 光激發光原理介紹 9 2.3 鈣鈦礦量子點 11 2.4光學塔米結構 13 2.5 雷射基本原理 18 2.5.1 光與物質之交互作用 18 2.5.2雷射之基本組成元素 21 2.5.3 居量反轉 22 2.6 激子-極化子凝聚態(Exciton-Polariton Condensates) 24 2.7文獻回顧 28 2.7.1鈣鈦礦雷射 28 2.7.2 激子-極化子凝聚態 30 第三章 實驗設備與方法介紹 35 3.1實驗儀器介紹 35 1.光學顯微鏡 (Optical Microscope, OM) 35 2.場發射掃描式電子顯微鏡(SEM) 35 3.烘箱(Oven) 36 4.旋轉加熱盤(Hot plate) 36 5.溫控加熱包 37 6 超音波震盪器 37 7 旋轉離心機 38 8 震盪攪拌器 38 9 微量電子秤 39 10 旋轉塗佈機 39 11 電子束蒸鍍機(E-GUN) 40 12 掃描式穿透反射系統(R&T system) 41 13脈衝雷射 42 14光譜儀 42 15 光致發光量測系統(PL system) 43 16 微螢光量測系統(Micro PL system, μ-PL system) 43 3.2 實驗流程 44 3.2.1 COMSOL模擬 45 3.2.2 設計TPs結構之高反射鏡DBR與相關實驗參數 46 3.2.3 鈣鈦礦量子點之合成步驟 47 3.2.4 DBR之製程流程 48 3.2.5 實驗耗材 49 第四章 結果與討論 50 4.1 COMSOL數據模擬與分析 50 4.1.1 TPs結構設計模擬 50 4.2 鈣鈦礦量子點之光學量測 53 4.3 TPs結構之激發光譜分析 54 4.4極化子凝聚態之現象探討 58 第五章 結論與未來展望 63 參考文獻 64

    [1] Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15.6 (2015): 3692-3696.
    [2] Wang, Yue, et al. "All‐inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics." Advanced materials 27.44 (2015): 7101-7108.
    [3] Li, Guangru, et al. "Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix." Nano letters 15.4 (2015): 2640-2644.
    [4] Huang, Hsin-Hsiang, et al. "Boosting the ultra-stable unencapsulated perovskite solar cells by using montmorillonite/CH 3 NH 3 PbI 3 nanocomposite as photoactive layer." Energy & Environmental Science 12.4 (2019): 1265-1273.
    [5] Liu, Xingyue, et al. "Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr 3 perovskites for applications in optical communication." Journal of Materials Chemistry C 8.10 (2020): 3337-3350.
    [6] Wang, Yan, et al. "Synergies of electrochemical metallization and valance change in all‐inorganic perovskite quantum dots for resistive switching." Advanced materials 30.28 (2018): 1800327.
    [7] Yen, Meng-Cheng, et al. "All-inorganic perovskite quantum dot light-emitting memories." Nature Communications 12.1 (2021): 1-12.
    [8] Huang, Chun-Ying, et al. "CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability." Acs Photonics 4.9 (2017): 2281-2289.
    [9] Hsing, J. Y., et al. "Microdisk cavity laser with InGaAs quantum dots on AlAs/GaAs distributed Bragg reflector." Journal of crystal growth 378 (2013): 622-626.
    [10] Kavokin, A. V., I. A. Shelykh, and G. Malpuech. "Lossless interface modes at the boundary between two periodic dielectric structures." Physical Review B 72.23 (2005): 233102.
    [11] I. Tamm, Zh. Eksp. Teor. Fiz. 3, 34 (1933)
    [12] Auguié, Baptiste, et al. "Tamm plasmon resonance in mesoporous multilayers: toward a sensing application." Acs Photonics 1.9 (2014): 775-780.
    [13] Byrnes, Tim, Na Young Kim, and Yoshihisa Yamamoto. "Exciton–polariton condensates." Nature Physics 10.11 (2014): 803-813.
    [14] Huang, Chun-Ying, et al. "CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability." Acs Photonics 4.9 (2017): 2281-2289.
    [15] Liu, Xinfeng, et al. "Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals." ACS nano 9.1 (2015): 687-695.
    [16] Lundt, Nils, et al. "Room-temperature Tamm-plasmon exciton-polaritons with a WSe 2 monolayer." Nature communications 7.1 (2016): 1-6.
    [17] Bouteyre, Paul, et al. "Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices." ACS photonics 6.7 (2019): 1804-1811.
    [18] Su, Rui, et al. "Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets." Nano letters 17.6 (2017): 3982-3988.
    [19] Li, Xiaoming, et al. "CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes." Advanced Functional Materials 26.15 (2016): 2435-2445.

    無法下載圖示 本全文未授權公開
    QR CODE