簡易檢索 / 詳目顯示

研究生: 陳俊廷
論文名稱: 我國公務人員數位學習行為意向、使用行為與相關影響因素關係模式之建構
指導教授: 黃明月
Hwang, Ming-Yueh
學位類別: 博士
Doctor
系所名稱: 社會教育學系
Department of Adult and Continuing Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 183
中文關鍵詞: 公務人員數位學習數位學習行為意向數位學習使用行為結構方程模式
英文關鍵詞: civil service personnel e-learning, e-learning behavioral intention, e-learning behavior, structural equation modeling
DOI URL: https://doi.org/10.6345/NTNU202204080
論文種類: 學術論文
相關次數: 點閱:157下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在瞭解影響我國公務人員數位學習行為意向及使用行為的主要因素有哪些?除瞭解這些影響因素與數位學習行為意向與使用行為的現況,並依據其之間的關係建構出完整模式。取樣對象為行政院人事行政總處公務人力發展中心建置之「e等公務園」會員,抽樣時方式採取分層隨機抽樣方法,依服務機關類型隨機抽取1,200個樣本,並將問卷置於平台,透過平台寄送mail通知受試者填寫問卷,調查期間於2014年2月至5月,共計回收569份,有效問卷為518份。研究工具除能力動機(數位學習準備度)、認知覺察(知覺有用性及知覺易用性)、社會影響因素、數位學習行為意向等受試者自評量表外,另配合平台所記錄之使用行為客觀資料(認證時數、選課門數、登入次數與閱讀時間),透過統計分析後,獲致下列研究結果:
    一、我國公務人員所具備數位學習的能力或動機、認為數位學習有用或容易使用的程度、認為社會影響因素對其進行數位學習影響的程度、及數位學習行為意向程度高;而公務人員四種數位學習使用行為之間的關聯性高,但同個使用行為的內部差異大。
    二、我國公務人員不同個人背景變項對數位學習行為意向與使用行為之差異情形:不同職等在數位學習行為意向差異達顯著;而不同教育程度在登入次數及不同電腦使用經驗在閱讀時間的使用行為上有顯著差異。
    三、我國公務人員數位學習行為意向、使用行為與相關影響因素的整體模型,包含「數位學習準備度」(能力動機面向)、「知覺有用性」與「知覺易用性」(認知覺察面向)、「社會影響因素」(社會影響面向)、「行為意向」與「使用行為」等構面,經結構方程統計分析達合理適配。即公務人員所具備的數位學習準備度越高、越認為數位學習容易使用及對自己有幫助、及感受到重要他人及組織文化等社會影響因素越重視數位學習,其進行數位學習的行為意願越高,數位學習使用行為出現的時數、次數與頻率等也越多。顯示本研究經文獻探討所建構的理論模式,可以用來解釋公務人員的數位學習行為意向與使用行為。
    四、在整體模型中,數位學習準備度與知覺有用性到使用行為路徑的迴歸係數皆不顯著。顯示數位學習行為意向在本模型中扮演完全中介的角色,即所有影響因素都必須透過該變項的影響,才會產生數位學習使用行為。
    五、從個別因素的影響來看,數位學習行為意向對四種使用行為的影響效果皆為最高,其次為社會影響因素、知覺易用性、數位學習準備度與知覺有用性;而從三種影響因素面向比較,社會影響因素對行為意向與使用行為影響的程度最高,即如欲在公務界推動數位學習,先強化促進公務人員使用數位學習的意圖及社會影響因素,是較有效果的。
    本研究並依據研究結果提出結論與建議,提供未來對此研究領域進行探討的研究者及公務部門數位學習推動主管機關、訓練機構數位學習推動者,在研究及工作推動上的參考。

    This objective of this research is to understand the relationships among those main factors affect the e-learning behavioral intention and behaviors of civil servants in Taiwan. Furthermore, the intent is to construct a complete model to understand how these main factors affect the e-learning behavioral intention and behaviors. This study collects the data from the member of “Public Service e-Learning Web”which is maintained by Civil Service Development Institute, Directorate-General of Personnel Administration, Executive Yuan. This research chooses stratified random sampling to get a sample of size 1,200 totally based on different types of government agencies. The 1,200 questionnaire are sent by email through“Public Service e-Learning Web”during February to May in 2014, with 569 returned , and 518 out of them are valid for the confirmatory factor analysis with structural equation modeling. As far as e-learning behaviors are defined as users’credit hours, course numbers, log-in frequency, and reading time recorded in“Public Service e-Learning Web.
    The data from self-report questionnaire about the main factors affect the e-learning behavioral intention and behaviors, including users’ability and motivation (e-learning readiness), cognition awareness (perceived usefulness and perceived ease of use), and social factors, are analyzed with the data of e-learning behaviors. The findings of this research are as follows:
    1.Civil servants have high e-learning ability or motivation, and confirm the usefulness and ease of e-learning. Social factors influence e-learning behavior. There are positive relationships among the e-learning behaviors, bhowever, there are big various within each e-learning behavior.
    2.There are differences between civil servants from different background variables: (1) Civil servants at different positions appeared significant different in e-learning behavioral intention. (2) Civil servants with different educational levels appeared significant different in log-in frequency. (3) Civil servants having different computer experience appeared significant different in reading time.
    3.The model includes 6 concepts such as e-learning readiness (ability and motivation), perceived usefulness and perceived ease of use (cognition awareness), social influence factors (social influence), e-learning behavioral intention, and user behaviors. The model has been exanimated as a fit structural equation model. This means that the higher level of e-learning readiness the civil servants have, the more they think e-learning is easily used and useful, the more they feel the intention of e-learning focusing of important-others and organization culture ,the more frequently they show e-learning behaviors.
    4.In this complete model, there’s no significant in the relation of e-learning readiness and perceived usefulness. This shows that e-learning behavioral intention plays as a complete mediation, which means that every other factors affect to e-learning behaviors through it.
    5.Analyzing those individual factors, e-learning behavior intention makes the greatest effect to behaviors. Then, the social influence factors, perceived ease of use, e-learning readiness and perceived usefulness affect decreasingly in order. Comparing the influence of the factors, social factors have the greatest effect on the behavior intention and behavior. Meanwhile, reinforcing the e-learning using intention and social influence factors will be effective to promote e-learning in public sector.
    The suggestions of this study are provided for further research and e-learning practice.

    第一章 緒論…………………………………………………………1 第一節 研究背景與動機………………………………………1 第二節 研究目的與問題………………………………………8 第三節 重要名詞釋義…………………………………………9 第四節 研究範圍及限制………………………………………11 第二章 文獻探討……………………………………………………15 第一節 公務人員數位學習的意涵與發展……………………15 第二節 數位學習行為意向與使用行為相關理論與研究……23 第三節 影響數位學習行為意向與使用行為相關因素探討…31 第三章 研究設計與實施……………………………………………51 第一節 研究架構………………………………………………51 第二節 研究假設………………………………………………53 第三節 研究對象與取樣方法…………………………………55 第四節 研究工具發展…………………………………………59 第五節 資料處理與分析………………………………………73 第四章 研究結果分析與討論………………………………………77 第一節 影響公務人員數位學習因素與行為意向、使用行為之現況分析 ………………………………………………………………………77 第二節 不同個人背景變項在數位學習行為意向與使用行為之差異分析……………………………………………………………………83 第三節 各研究變項構面驗證性因素分析(CFA) ……………98 第四節 三種影響因素與行為意向、使用行為的研究模式關係 ……………………………………………………………………112 第五章 結論與建議 ………………………………………………131 第一節 研究發現 ……………………………………………131 第二節 結論 …………………………………………………135 第三節 建議 …………………………………………………137 參考文獻 ……………………………………………………………143 附錄 …………………………………………………………………157

    王裕鈜(2008)。公部門訓練機構推動數位學習策略之研究:以行政院人事行政局地方行政研習中心為例(未出版之碩士論文)。國立政治大學,臺北市。
    全國法規資料庫(2015a)。公務人員任用法,取自:http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=S0020001。
    全國法規資料庫(2015b)。公務人員任用法施行細則,取自:http://law.moj.gov.tw/LawClass/LawContent.aspx?pcode=S0020002。
    行政院人事行政總處(2016)。人事統計—行政院所屬各機關公務人員概況(民國104年第4季),取自:http://www.dgpa.gov.tw/ct.asp?xItem=9163&ctNode=393。
    李明軒、邱如美(譯)(1996)。國家競爭優勢(原作者:M. E. Porter)。臺北市:天下文化。(原作出版年:1990年)
    李明芬(1997)。從另類觀點詮釋後設認知。社會教育學刊,26,181-203。
    李家妤(2010)。國民小學教師數位學習準備度與自我導向學習關係之研究—以雲林縣為例(未出版之碩士論文)。國立中正大學,嘉義縣。
    李進寶(2003)。成功的數位學習發展策略。資策會教育訓練處簡報。台北市:資訊工業策進會。
    李嘉娜、王裕鈜、李民實(2008)。推動公務人員數位學習。載於2008數位學習白皮書(43-48)。臺北市:數位典藏學習國家型科技計畫辦公室。
    余思賢、張艾潔(2003)。如何成為一個優質的線上學習者。T&D飛訊,9,1-10。
    何鴻略(2010)。從社會促進理論探討數位學習系統之同儕學習進度的影響(未出版之碩士論文)。國立成功大學,臺南市。
    周文祥(譯)(1998)。巨變時代的管理(原作者:P. F. Drucker)。臺北市:中天。(原著出版年:1995)
    周玉涵、劉仲矩(2013)。公務員人員參與數位學習阻礙因素之研究。2016年3月5日取自中央警察大學『資訊、科技與社會』電子學報,網址:http://jitas.im.cpu.edu.tw/2013/6.pdf
    東森媒體科技集團策略發展中心(2000)。2000年資訊科技大會講者演說內容重點摘要。取自淡江大學,網址:http://info.tku.edu.tw/WCIT2000%20speakers0627ppt.ppt
    吳三靈(2006)。推動公務人員數位學習之現況與展望。研習論壇,67,12-20。
    吳明隆(2008)。SPSS操作與應用-問卷統計分析實務。臺北市:五南。
    吳怡如(2008)。學習風格對混成學習成效之相關性研究-以公務人員混成學習為例(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    吳昭韻(2008)。公務人員終身數位學習持續意圖之探討(未出版之碩士論文)。國立高雄第一科技大學,高雄市。
    吳俊男(2004)。由國小教師運用資訊科技融入教學分析其科技準備度(TRI)及科技接受模式(TAM)之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
    吳斯茜(2003)。數位學習驅動下的公務培訓。公教資訊, 7( 1), 29-34。
    林信志、湯凱雯、賴信志(2010)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊,2(1),60-78。
    林煌添(2008)。以科技接受模式探討國小學生網路資訊素養與數位學習的相關性(未出版之碩士論文)。朝陽科技大學,臺中市。
    林靖文(2011)。運用科技準備度與科技接受模式探討公共圖書館使用者使用數位服務科技之意願-以國立臺中圖書館為例(未出版之碩士論文)。國立臺灣大學,臺北市。
    邱浩政(2011)。結構方程模式:LISREL/SIMPLIS原理與應用。臺北市:雙葉。
    邱浩政(2012)。量化研究法(三):測驗原理與量表發展技術。臺北市:雙葉。
    洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-234。
    范祥偉(2008)。運用數位學習推動錦囊,構築公部門數位學習新視界。人事月刊,47(3),33-37。
    胡庠卉(2011)。影響高等教育學生使用數位學習系統意願因素之研究—應用UTAUT模型分析(未出版之碩士論文)。國立中央大學,新竹縣。
    翁慧敏(2003)。談「e等公務園」學習網的現在與未來。人事月刊,37(4),52-54。
    徐新逸(2003)。數位學習課程發展模式初探。教育研究月刊,116,15-30。
    徐新逸、黃美蘭(2008)。數位學習素養之內涵與培育。教育資料與研究,80,147-172。
    韋祿恩(2009)。企業員工電腦學習態度、社會支持與數位學習滿意度之關係研究(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    栗四維、莊有豪(2009)。Wiki使用者與使用行為之研究。Jounal of e-Business,11(1),185-212。
    許怡安(2001)。兒童網路使用與網路媒體素養之研究—以台北縣市國小高年級學童為例(未出版之碩士論文)。國立政治大學,臺北市。
    黃光國(2003)。社會科學的理路(二版)。臺北市:心理。
    黃芳銘(2004)。結構方程模式:理論與應用(三版)。臺北市:五南。
    黃美蘭(2008)。大專院校生數位學習準備度指標之建立(未出版之碩士論文)。淡江大學,新北市。
    黃秀美、廖英掌(2009)。臺灣公務人員數位學習使用意向與行為影響因素及差異性探討。人事月刊,49(1)。20-32。
    黃笠嘉(2011)。影響公務人員接受數位學習之關鍵因素(未出版之碩士論文)。國立中正大學,嘉義縣。
    黃敬仁、蘇皇文、王硯聰、柯元植、劉建生、林建華(2008)。數位學習中學習者風格對學習滿意度與學習績效之影響分析。商業現代化學刊,4(3),67-80。
    康雅菁、林燦瑩(2011)。公部門數位學習應用趨勢。人事月刊,52(8),34-46。
    陳玉婷、蔡立元(2009)。從科技接受模式觀點探討資訊科技融入學習。台南科大學報,28,217-236。
    陳年興、楊錦潭(2006)。數位學習理論與實務。新北市:碩博文化。
    陳怡君(2002)。國內政府部門E-Learning網站經營現況與趨勢。公訓報導,102,43-45。
    陳芷沂(2006)。高齡者教師教學準備度量表建構之研究(未出版之碩士論文)。國立中正大學,嘉義縣。
    陳美紀、余昇樺、林美純、宋美妹(2010)。公務人員參與數位課程影響因素之探討。T&D飛訊,14,19-24。
    陳欣舜、蕭涵云(2003)。整合式學習。數位學習最佳指引。臺北市:資策會教育訓練處。
    陳俊廷(2010)。公部門推動數位學習的領航者-公務人力發展中心數位學習推展實務,人事月刊,51(6),60-63。
    陳姿伶(2004a)。「e等公務園」學習網使用者學習行為之研究。公務人力發展中心委託研究計畫。
    陳姿伶(2004b)。中高階公務人員線上學習經驗之剖析。行政院人事行政總處公務人力發展中心訓練佳文選粹。取自:http://epaper.hrd.gov.tw/49/EDM49-0501.htm。
    陳姿伶(2005)。混成教學推動策略之研究-以地方公務人員訓練為例。行政院人事行政局地方行政研習中心委託研究。
    陳姿伶、陳姿蓉和岳修平(2006)。從創新傳播觀點探討公務員學習者的數位學習知覺效益之研究。教學科技與媒體,77,4-20。
    梁定澎(2012)。資訊管理理論。新北市:前程文化。
    張金鐘(2001)。以科技接受模式探討教師與學生採用數位化教材的態度(未出版之碩士論文)。國立中山大學,高雄市。
    張春興(1989)。張氏心理學辭典。臺北市:東華。
    張偉豪、鄭時宜(2012)。與結構方程模型共舞:暏光乍現。新北市:前程文化。
    張德永、陳伯霖、劉以慧(2012)。自我導向學習在數位學習環境的實踐。T&D飛訊,23,64-73。
    張竣傑(2010)。應用科技接受模式探討數位教學平台之學習者互動與其電腦自我效能對學習成效之影響(未出版之碩士論文)。義守大學,高雄市。
    齊思賢(譯)(2000)。知識經濟時代(原作者:L. C. Thurow)。臺北市:時報文化。(原著出版年:1998年)
    路蓮婷(2005),我國地方政府公務人員使用e-learning情形調查之研究(上)。研習論壇月刊,53,26-36。
    游玉梅(2002a)。數位學習時代公務員應具備的能力與新思維。公訓報導,102,34-37。
    游玉梅(2002b)。公部門的學習革命─線上學習概論。人事月刊,34(3),32-45。
    游玉梅(2008)。如何成為高效數位學習者。行政院人事行政總處公務人力發展中心訓練佳文選粹。取自:http://www.hrd.gov.tw/content/training/training05_01.aspx?sid=2。
    游光昭(2003)。網路化教育訓練概論。臺北市:師大書苑。
    趙美聲、宋明娟、陳鏗任、蔡曉楓、吳靜怡(2005)。國內公務人員數位學習需求調查及具體推動策略與步驟。執行單位:國立台灣師範大學教育學系,委託單位:行政院人事行政局。
    趙美聲、陳鏗任、王玉蘭(2007)。數位學習準備度指標之發展。T&D飛訊,64,1-20。
    廖英掌(2009)。公務人員數位學習使用意向與行為影響因素之研究(未出版之碩士論文)。臺中技術學院,臺中市。
    楊叔夏(2008)。計畫行為理論運用於網路使用行為之研究-以台中縣某校高職生為例(未出版之博士論文)。亞洲大學,臺中市。
    楊洲松(2004)。解放與賦權—媒體素養教育的理念與實踐。台灣教育,629,2-8。
    鄒景平(2003)。數位學習概論,收錄於數位學習最佳指引(資訊工業策進會教育訓練處講師合著)。臺北市:資訊工業策進會教育訓練處。
    劉守成(2007)。數位學習與公務人力培訓。考銓季刊,49,1-13。
    劉可德(2010)。公務人員數位學習的科技接受模式與相關變項關係之研究(未出版之博士論文)。國立臺灣師範大學,臺北市。
    劉雯瑜、蔡瓊卉(2011)。以整合型科技接受理論探討大專教師學習管理系統採用行為之研究。績效與策略研究,8(2),49 - 60。
    劉杰(2007)。e-Learning2.0環境中大學生自我導向學習與網路學習動機之探討(未出版之碩士論文)。國立臺灣師範大學,台北市。
    顏春煌(2007)。漫談數位學習的理論。空大學訊,385,91-96。
    蘇明秀(2011)。影響公務人員數位學習滿意度因素之研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
    賴郁淇(2007)。探討Podcasting採用因素與使用行為之研究(未出版之碩士論文)。國立政治大學,臺北市。
    賴弘基(2013)。善用網路非正式學習以提升職場學習之成效。T&D飛訊,160,1-22。
    ASTD. (2003). Glossary. Learning circuits - ASTD Online Magazine. Retrieved from: http://www.learningcircuits.org/glossary
    Agarwal, R. & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215.
    Agarwal, R. & Karahanna, E. (2000) Time flies when you're having fun : Cognitive absorption and beliefs about information technology usage, MIS Quarterly, 24(4), 665-694.
    Ajzen, I. (1985). From intention to actions: A theory of planned behavior. In: J. Kuhl, J., & Beckmann, J. (Eds). Action-control from cognition to behavior ( pp.11-39) .Springer-Verlag Berlin Heidelberg.
    Ajzen, I., & Madden, T. J. (1986). Prediction of goal directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, 22, 453-474.
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
    Bandura, A.(1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice Hall Press.
    Bernard, R. M., Brauer, A., Abrami, P. C., & Sturkes, M. (2003). The development of a questionnaire for predicting online learning achievement. Distance Education, 25 (1), 31-47.
    Bentler, P. M., & Wu, E. J.C. (1995). EQS for Windows User’s Guide, Encino, C.A.: Multivariate Software Inc.,
    Birch, P.D. (2002). E-learner competencies. Learning circuits - ASTD Online Magazine. Retrieved from : http://www.learningcircuits.org/2002/jul2002/birch.html
    Bollen, K.(1989). Structural Equations with Latent Variables, Wiley, New York.
    Braeckman, L.A., Fieuw A.M., & Van Bogaert, H.J.(2008). A web- and case-based learning program for postgraduate students in occupational medicine. International Journal of Occupational and Environmental Health, 14(1), 51-56.
    Broad, M. L. & Newstrom, J. W. (1992). Transfer of training: Action-packed strategies to ensure high payoff from training investments., Addison-Wesley, Reading, MA.
    Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research, New York: Guilford.
    Byrne, B. M. (2010). Structural equation modeling with Amos: Basic concepts, applications, and programming (2nd ed.). New York, NY: Taylor and Francis Group.
    Carter, V. (1996). Do media influence learning. Revisiting the debate in the context of distance education. Open Learning, 11(1), 31-40
    Chou, H. W. (2001). Influences of Cognitive Style and Training Method on Training Effectiveness, Computers & Education, 37, 11-15.
    Cisco (2001). Internet learning solutions group e-learning glossary. Retrieved from: http://www.masie.com/standards/s3supplement/elearn_glossary.pdf
    Clark, R. C. & Mayer, R. E. (2003). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. San Francisco: Jossey-Bass/Pfeiffer.
    Compeau, D., Higgins, C. & Huff, S. (1999). Social Cognitive Theory and Individual Reactions to Computing Technology: A Longitudinal Study, MIS Quarterly, 23 (2): 145-158.
    Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Ph.D. dissertation, MIT Sloan School of Management, Cambridge, MA.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.
    Davis, F. D. & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. International Journal of Human–Computer Studies, 45(1), 19-45.
    Davis, F., Bagozzi, R. & Warshaw, P. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.
    Dastjerdi, N. B.(2015). Factors affecting ICT adoption among distance education students based on the technology acceptance model—A case study at a distance education university in Iran. International Education Studies, 9(2), 73-80.
    Dray, B. J., Lowenthal, P. R., Miszkiewicz, M. J., Ruiz-Primo, M. A. & Marczynski, K. (2011). Developing an instrument to assess student readiness for online learning: A validation study. Distance Education, 32(1), 29 -47.
    Doll W.J., Xia W. & Torkzadeh G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument, MIS Quarterly. 12(2). 259-274.
    Economist Information Unit (EIU) (2011). The IT industry competitiveness index 2011, Retrieved from: http://globalindex11.bsa.org/country-table/.
    Fishbein, M.& Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley, Reading, MA.
    Fornell, C., & Lacker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39-50.
    Gay, L. R. (1992). Educational research competencies for analysis and application. New York: Macmillan.
    Giovanis, K.(2015). Keep It Simple: Challenges, Solutions, and Best Practices for Global eLearning Initiatives. International Journal of Advanced Corporate Learning,8(2),47-50.
    Gotschall, M. (2000). E-learning strategies for executive education and corporate training, Fortune, 141(10), S5-S59.
    Guglielmino, P.J., & Guglielmino, L. M. (2003). Are your learners ready for e-learning? In Piskurich, G. (Ed.) The American management association handbook of e-learning: Effective design, implementation and technology solutions. New York: AMACOM.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C.(2006). Multivariate data analysis, 6th ed., NJ: Prentice-Hall.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C.(2009). Multivariate data analysis, 7th ed., NJ: Prentice-Hall.
    Hoyle, R. A., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158 – 176). Thousand Oaks, CA: Sage.
    Hu, L.T., Bentler, P. M. & Kano, Y.(1992). Can test statistics in covariance structure analysis be trusted? Psychol Bull. 112(2), 351-62.
    Hung, M. L., Chou, C., Chen, C. H., & Own, Z. Y. (2010). Learner readiness for online learning: Scale development and student perceptions. Computers & Education, 55(3), 1080-1090.
    Iqbal, S. & Bhatti, Z. A. (2015). An Investigation of University Student Readiness towards M-learning using Technology Acceptance Model. International Review of Research in Open and Distributed Learning, 16(4), 83-102.
    Johnson, D. W., & Johnson, R. T. (1989). Cooperative and competition:Theory and research. Edina, MN:Interaction Book Company.
    Kim, H. J., & Pedersen, S. J. (2005). The constraints and possibilities of working memory in the design of learner-centered web-delivered learning environment. Annual Proceedings. 2, 279-285.
    Levy, Y. & Green, B. (2009). An empirical study of computer self-ffficacy and the technology acceptance model in the military: A case of a U.S. navy combat information system. Journal of Organizational and End User Computing. 21(3), 1-23.
    McVay, M. (2001). How to be a successful distance learning student: Learning on the Internet. New York: Prentice Hall.
    McClure, C. R. (1994). Network literacy: A role for libraries? Information Technology & Libraries, 13 (2), 115-125.
    Merriam-Webster. (2015). Definition of literacy by Merriam-Webster. Retrieved from: http://www.merriam-webster.com/dictionary/literacy.
    Mtebe, J. S., Mbwilo, B. & Kissaka, M. M.(2016). Factors influencing teachers’ use of multimedia enhanced content in secondary schools in Tanzania. International Review of Research in Open and Distributed Learning, 17(2), 65-84.
    OECD (1996). Knowledge-based country. Paris: OECD.
    Osman, M. E. & Hannafin, M. J. (1992). Metacognition research and theory: Analysis and implications for instructional design. Educational Technology Research & Development, 40(2), 83-99.
    Parker, A. (1999). A study of variables that predicts dropout from distance education. International Journal of Educational Technology, 1(2), 1-12.
    Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Educational Technology & Society, 12 (3), 150–162.
    Pillay, H., Irving, K. & Tones, M. (2007). Validation of the diagnostic tool for assessing tertiary students’ readiness for online learning. Higher Education Research and Development, 26(2), 217-234.
    Pituch, K. A. & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computer & Education, 47(2), 222-244.
    Rosenberg, M. J.(2001). E-Learnig: strategies for delivering knowledge in the digital age, The McGraw-Hill Companies.
    Sang, S. & Lee, J. D. (2009). A conceptual model of e-government acceptance in public sector. Retrieved from: http://portal.acm.org/citation.cfm?id=1511467.
    Schumacker R. E. & Lomax R. G. (2004). A beginner's guide to structural equation modeling. (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
    Shih, M., Feng, J., & Tsai, C. C. (2008). Research and trends in the field of e-learning from 2001 to 2005: A content analysis of cognitive studies in selected journals. Computers and Education, 51(2), 955-967.
    Shulamit, K. & Yossi, E. (2011). Development of e-Learning environments combining learning skills and science and technology content for junior high school. Procedia Social and Behavioral Sciences, 11, 175-179.
    Simonson, M., Smaldino, S., Albright, M. & Zvacek, S. (2006). Teaching and learning at a distance: Foundations of distance education (3rd ed.) Upper Saddle River, NJ: Prentice Hall.
    Smith, P. J., Murphy, K. L. & Mahoney, S. E. (2003). Towards identifying factors underlying readiness for online learning: An exploratory study. Distance Education, 24(1), 57–67.
    Smith, P. J. (2005). Learning preferences and readiness for online learning. Educational Psychology, 25 (1), 3-12.
    Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6, 144–176.
    Thurmond, V. A., Wambach, K., Connors, H. R., & Frey, B. B. (2002). Evaluation of student satisfaction: Determining the impact of a web-based environment by controlling for student characteristics. The American Journal of Distance Education, 16, 169-189.
    Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.
    Trace A., Cornelia, U. & Weggen, c. (2000). Corporate e-learning: Exploring a New Frontier. WR Hambrecht Co.
    Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.
    Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
    Venkatesh, V., Morris, G. M., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
    Warner, D., Christie, G., & Choy, S. (1998). The readiness of the VET sector for flexible delivery including on-line learning. , Brisbane: Australian National Training Authority.
    Watkins, R., Leigh, D., & Triner, D. (2004). Assessing readiness for e-learning. Performance Improvement Quarterly, 17(4), 66-79.
    Wangpipatwong, S., Chutimaskul, W. & Papasratorn, B.(2007). The role of technology acceptance model's beliefs and computer self-efficacy in predicting e-government website continuance intention. WSEAS Transactions on Information Science and Applications, 4(6), 1212-1218.
    Xenos, M. (2004). Prediction and assessment of student behavior in open and distance education in computers using Bayesian networks. Computers & Education, 43(4), 345-359.
    Yu, T. & Richardson, J.C. (2015). An exploratory factor analysis and reliability analysis of the student online learning readiness (SOLR) instrument. Online Learning, 19(5). 120–141.

    下載圖示
    QR CODE