研究生: |
魏世凱 Wei-Shi Kai |
---|---|
論文名稱: |
樟腦磺酸金屬錯合物與DNA結合機轉之探討 The Study of camphor sulfonic acid derivatives metal complex selective binding affinity to DNA |
指導教授: |
黃文彰
Huang, Wen-Chang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | DNA 、金屬錯合物 、樟腦磺酸 |
英文關鍵詞: | DNA, metal complex, camphor sulfonic acid |
論文種類: | 學術論文 |
相關次數: | 點閱:186 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經由一維1H NMR光譜實驗得知,樟腦磺酸衍生物與金屬銅離子間有互相結合的性質,當其結合後為使一維NMR光譜有兩種不同的現象,為圖譜變寬及化學位移。樟腦磺酸衍生物與金屬銅離子的錯合物與銅離子結合的大多有不同程度的圖譜變寬,而與鋅離子結合則多有化學位移現象,唯有Cpd3-Zn含有兩種不同現象。
樟腦磺酸衍生物與金屬離子皆有結合的能力,差別只在於結合的強度的不同。
然後我們以洋菜膠凝電泳實驗,來探討樟腦磺酸衍生物對金屬離子的抑制力及其切割DNA的能力與選擇性,在單純只有金屬離子時其實就會對電泳實驗中的φX 174 DNA 有切割的效應,銅離子在Lane 3 (4μM) 即可將φX 174 DNA切割成碎片,而鋅離子Lane 2 (2μM) 時Form I即完全消失。然而在只有純樟腦磺酸衍生物時,以相同的條件進行電泳實驗,即使到了濃Lane 8 (60μM)也沒有明顯切割φX 174 DNA的反應。
所以以我們可以看出Cpd1及Cpd2與鋅離子的有較大的結合能力。而與銅離子間有較小結合度,而Cpd1與銅離子結合後,對切割φX 174 DNA較有選擇性。Cpd3則與銅離有高度的結合能力,在與鋅離子方面則只有很小的結合度。
而最後以CD光譜實驗來進行金屬樟腦磺酸衍生物與不同序列長度的DNA反應,而這些DNA序列中的部份如 -CCGG-、-CATG-、-AAATTT-,皆可在φX 174 DNA中含找到。當以純金屬及純化物進行CD光譜實驗可發現純金屬都沒有吸收,而樟腦磺酸衍生物因其構形上的差異所以會有不同程度的CD光譜吸收。
從CD光譜我們可以發現與銅離子結合的樟腦磺酸衍生物的CD光譜訊號較與鋅離子結合還強,而Cpd1-Cu、Cpd2-Cu與不同長度及序列的DNA會有不同比例的結合,其中Cpd1-Cu則較無選擇性,對不同長度及序列的DNA幾乎都是相同的結合比,當以Cpd2-Cu滴定DNA則較有選擇性。Cpd3-Cu則無較明顯的結合性。而Cpd1-Zn、Cpd2-Zn與DNA之間並無觀察到有結合的可能性,Cpd3-Zn與DNA之間也沒有明顯的結合變化。
This study utilize the cleavage activity of phage φX174 as the model DNA system to investigate the selectivity and affinity for a series camphor sulfonic acid derivatives [Cpd1: (C20H28N2O4), Cpd2: (C26H38N2O4), and Cpd3: (C27H26N4O4)] when complex with various metal ion. The cleavage activity is as follow: Zn2+ > Cu2+ >> Mn2+ ~ V4+ when complex with above series of camphor sulfonic acid derivatives as reveled from agarose electrophoresis experiment.
Whereas the chemical shifting experiment in 1D 1H NMR (One-dimensional 1H nuclear magnetic resonance spectroscopy) show the all metal and camphor sulfonic acid derivatives would bind together.
Whereas for the randomized sequence oligonucleotide, the AT-rich DNA sequence give better selectivity as forming stable 1:1 ratio complex such as: [d(CGAAATTTGCG)]2 > [d(CAGCTTG)]2 > [d(CCGG)]2 when investigated with CD (Circular dichroism) experiment.
Alexandru, F., Ghetu, M. J., Gubbins, K. O., Cyril, M. K., Laura, S. F., & J. N. Mark, G. (1999) Biochemistry 38, 14036-14044.
Air, G. M., Coulson, A.R., Fiddes, J. C., Friedmann, T., Hutchison, C. A., Sanger, F., Slocombe, P. M., & Smith, A. J. (1978) J. Mol. Biol. 125, 247-254.
Atwell, S., Meggers, E., Spraggon, G., and Schultz, P. G. (2001) J. Am. Chem. Soc. 123, 12364-12367.
Blasko, A., Browne, K. A., Bruice, T. C. (1995 ) Bioorg. Med. Chem. 6, 631-646.
Chen, F. M., and Sha, F. (2002) Biochemistry 41, 5043-5049.
Detmer III, C. A., Pamatong, F. V., & Bocarsly, J. R. (1997) Inorg. Chem. 36, 3676-3682.
Flowers, L., Ohnishi, S. T., Penning, T. M. (1997) Biochemistry 36, 8640-8648.
Fulmer, P., Zhao, C., Li W., DeRose, E., Antholine, W. E., & Petering, D. H. (1997) Biochemistry 36, 4367-4374.
Funk, F., Sinsheimer, R. L., (1970) J. Viro.l 3, 282-288.
Huang, G.J., Krugh, T.R., (1990) Anal. Biochem. 1 , 121-125.
Huang, H. W., Li, D., Cowan, J. A., (1995) Biochimie 77 , 729-738.
Hiort, C., Goodisman, J., Dabrowiak, J. C., (1996) Biochemistry 35, 12354-12362.
Halford, S. E., Johnson, N. P., (1981) Biochem J. 3, 767-777.
Ha, H. C., Yager, J. D., Woster, P. A., and Casero, Jr. R. A. (1998) Biochemical and biophysical research communications 244, 298-303.
Kashii, S., Ito, J., Matsuoka, I., Sasa, M., Takaori, S., (1984) Jpn. J. Pharmacol. 2, 153-159.
Keegstra, W., Baas, P. D., Jansz, H. S., (1979) J Mol Biol. 1, 69-89.
Kwiatkowski, M., Sandstrom, A., Balgobin, N., (1984) J. Acta Chem Scand B 9, 721-733.
Kasyanenko, N. A., Zanina, A. V., Nazarova, O. V., and Panarin, E. F. (1999) Langmuir 15,7912-7917.
Long, G. V., Harding, M. M., Fan, J. Y., Denny, W. A., (1997) Anticancer Drug Des. 6, 453-472.
Mukerji, I., & Williams A. P. (2002) Biochemistry 41, 69-77.
Melvin, M. S., Tomlinson, J. T., Saluta, G. R., Kucera, G. L. Lindquist, N.,and Manderville, R. A. (2000) J. Am. Chem. Soc. 122, 6333-6334.
Mickel, S., Arena, V. Jr, Bauer, W., (1977) Nucleic Acids Res. 5, 1465-1482.
Parkinson, J., Sadat-Ebrahimi, S., Wilton, A., McKie, J. H., Andrews, J., Douglas, K. T., (1995) Biochemistry 50, 16240-16244.
Robertson, H.D., Barrell, B. G., Weith, H. L., Donelson, J. E., (1973) Nat. New Biol. 106, 38-40.
Rye, H.S., (1995) Nucleic Acids Res. 7, 1215-1222.
Routier, S., Vezin, H., Lamour, E., Bernier, J. L., Catteau, J. P., and Bailly, C. (1999) Nucleic Acids Res. 21, 4160-4166.
Sanger, F., Slocombe, P. M. and Smith, A. J., (1978) J. Mol. Biol. 125, 247-254.
Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M. and Smith, M., (1977) Nature 265, 687-695.
Starck, S. R., Deng, J. Z., and Hecht, S. M. (2000) Biochemistry 39, 2413-2419.
Upcroft, P., Upcroft, J. A., (1993) J. Chromatogr. (1-2), 79-93.
Yoshino, M. Haneda, M., Naruse, M., Murakami, K. (1999) Molecular Genetics and Metabolism 68, 468-472.