簡易檢索 / 詳目顯示

研究生: 李冠緯
Lee, Kuan-Wei
論文名稱: 多孔性陽極氧化鋁場流分離系統應用於奈米粒子之尺寸區分方法研究
The Application of Porous Anodic Aluminum Oxide in Field-Flow Fractionation for Nanoparticles Size Discrimination
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 66
中文關鍵詞: 場流分離陽極氧化鋁奈米粒子尺寸區分
英文關鍵詞: Field-Flow Fractionation (FFF), Anodic Aluminum Oxide (AAO), size discrimination
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.007.2019.B05
論文種類: 學術論文
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們以多孔性陽極氧化鋁(anodic aluminum oxide, AAO)發展了一套嶄新的場流分離(Field-Flow Fractionation)裝置。在實驗之前,我們先提出一個捕捉粒子的模型,接著設計一系列的實驗來測試與驗證這個模型。實驗的操作主軸分為兩個面向,即電場場流分離系統與磁場場流分離系統。其一,於電場場流分離系統實驗中,我們發現粒徑(10 nm)小於陽極氧化鋁孔洞的粒子在電場的影響下有被電解的趨勢,但這個現象在粒徑(40 nm)大於陽及氧化鋁孔洞的粒子中並不存在。然而氣泡的生成致使我們無法證明捕捉粒子的模型則為此電場場流分離裝置的致命傷。其二,在磁場場流分離系統實驗中,粒子捕捉的效果在陽極氧化鋁板與未處理的鋁板皆有,但陽極氧化鋁在數量上多於鋁板。接著在粒徑分析實驗中,被捕捉的粒子粒徑一般而言小於未被捕捉粒子的粒徑。雖然這僅是相當初期的研究,但陽極氧化鋁應用於場流分離系統所擁有的粒子大小選擇性,則是首度被驗證。

    In the research, we developed a brand new Field-Flow Fractionation (FFF) device which based on porous anodic aluminum oxide (AAO) plate. After we issued a hypothesis of trap model, a series of experiments was designed to verify and testify the hypothesis. The line of the research separated into two different operations, the Electric Field-Flow Fractionation (ElFFF) and Magnetic Field-Flow Fractionation (MFFF). First, in the ElFFF experiment, a valuable result was found that a particle with a diameter (10 nm) smaller than the pores of AAO was prone to electrolysis under the electric field. While a particle had a diameter (40 nm) larger than AAO pores, such the tendency was not been found. However, the drawback of ElFFF, bubble formation, profoundly retarded us to verify the trap model in ElFFF. Second, in the MFFF experiment, the trap phenomenon was detected both in AAO plate and unprocessed Al plate, but the number of trapped particles in AAO plate was much more than Al plate. Furthermore, through the analysis of these trapped and non-trapped particles size, an exciting result indicated that the size of trapped particles was generally smaller than non-trapped particles. Although this was merely quite preliminary research, the size choosing ability of porous AAO first revealed in FFF instrument.

    Contents Abstract i 摘要 ii I. Principles 1  A. Anodic Aluminum Oxide (AAO) 1   1. Barrier-type AAO (Nonporous AAO Membranes) 2   2. Porous-type AAO 2  B. The Fabrication of Porous AAO 3   1. Interfacial Reactions 3   2. Field-Assisted Oxide Dissolution 5   3. Average Field Model(4) for Steady-State Pore Structure 6  C. Field-Flow Fractionation 8   1. Separation Mechanism 8   2. Electrical Field-Flow Fractionation 11   3. Theories of Electrical Field-Flow Fractionation 12   4. Magnetic Field Flow Fractionation (MFFF)(38) 15  D. Hypothesis 16 II. Experimental section 18  A. Chemicals 18  B. Apparatuses 18  C. Instruments 19  D. The apparatus arrangement for the porous AAO fabrication 20  E. FFF channel and instrument design 21   1. The fabrication of the channel 22   2. The arrangement of FFF system 24   3. The program for FFF controlling 26  F. Experiments 32   1. The fabrication of porous anodic aluminum oxide 32   2. Standard silver nanoparticle testing by ElFFF 33   3. Standard silver nanoparticle fractionation by ElFFF 35   4. The trap phenomenon investigation by ElFFF 36   5. The synthesis of magnetic particles 37   6. The magnetic particles trapping testing by MFFF 38 III. Results 40  A. The fabrication of porous anodic aluminum oxide 40  B. Standard silver nanoparticle testing by ElFFF 41  C. Standard silver nanoparticle fractionation by ElFFF 45  D. The trap phenomenon investigation by ElFFF 46  E. The synthesis of magnetic particles 48  F. The magnetic particles trapping testing by MFFF 49  G. The modification of the trap model 54 IV. Conclusions 56 V. Future works 57 VI. Appendixes 58 VII. References 63

    (1) Lee, W.; Park, S.J. Chemical Reviews 2014, 114, 7487−7556
    (2) D. Losic, A. Santos, Nanoporous Alumina Fabrication, Structure, Properties and Applications; Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015.
    (3) Brevnov, D. A.; Rama Rao, G.V.; López, G. P.; Atanassov, P. B. Electrochimica Acta 2004, 49, 2487–2494
    (4) O’sullivanf, J. P.; Wood, G. C. A. Mathematical and Physical Sciences 1970, 317, 511-543
    (5) Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis 6th; Books/Cole Cengage Learning, 2007, 885.
    (6) Wittgren, B.; Wahlund, K. G.; Dérand, H.; Wesslén, B. Langmuir 1996, 12, 5999-6005
    (7) Greyling, G.; Pasch, H. Analytical Chemistry 2015, 87, 3011-3018
    (8) Yohannes, G.; Wiedmer, S. K.; Hiidenhovi, J.; Hietanen, A. Hzötzläinen, T.; Analytical Chemistry 2007, 79, 3091-3098
    (9) Giddings, J. C. Analytical Chemistry 1995, 69(19), 592 A-598 A
    (10) Wang, X. B.; Yang, J.; Huang, Y.; Vykoukal, J.; Becker, F. F.; Gascoyne, P. R. C. Analytical Chemistry 2000, 72, 832-839
    (11) Yang, J.; Huang, Y.; Wang, X. B.; Becker, F. F.; Gascoyne, P. R. C.Analytical Chemistry 1999, 71, 911-918
    (12) Thang, N. M.; Knopp, R.; Geckeis, H.; Kim, J. I.; Beck, H. P. Analytical Chemistry 2000, 72, 1-5
    (13) Kim, W.S.; Lee, D. W.; Lee, S. Analytical Chemistry 2002, 74, 848-855
    (14) Schure, M. R.; Myers, M. N.; Caldwell, K. D.; Byron, C.; Chen, P. C.; Giddings, J. C. Environmental Science & Technology 1985, 19, 686-689
    (15) Jungmann, N.; Schmidt, M.; Maskos, M. Macromolecules 2001, 34, 8347-8353
    (16) Müller, D.; Nogueira, M.; Cattaneo, S.; Meier, F.; Drexel, R.; Contado, C.; Pagnoni, A.; de Vries, T.; Cohen, D.; Portugal-Cohen, M.; deMello, A. Analytical Chemistry 2018, 90, 3189-3195
    (17) Wagner, M.; Holzschuh, S.; Traeger, A. Fahr, A.; Schubert, U. S. Analytical Chemistry 2014, 86, 5201-5210
    (18) Lao, A. L. K.; Lee, Y. K.; Hsing, I. M. Analytical Chemistry 2004, 76, 2719-2724
    (19) Smith, M. H.; South, A. B.; Gaulding, J. C.; Lyon, L. A. Analytical Chemistry 2010, 82, 523-530
    (20) Giddings, J. C.; Yang, F. J. F.; Myers, M. N. Analytical Chemistry 1974, 46 (13), 1917-1924
    (21) Giddings, J. C.; Caldwell, K. D.; Myers, M. N. Macromolecules 1976, 9(1), 106-112
    (22) Schure, M. R.; Caldwell, K. D.; Giddings, J. C. Analytical Chemistry 1986, 58, 1509-1516
    (23) Gigault, J.; Gale, B. K.; Hecho, I. L.; Lespes, G. Analytical Chemistry 2011, 83, 6565-6572
    (24) Kantak, A. S.; Srinivas, M.; Gale, B. K. Analytical Chemistry 2006, 78, 2557-2564
    (25) Tasci, T. O.; Johnson, W. P.; Fernandez, D. P.; Manangon, E.; Gale, B. K. Analytical Chemistry 2013, 85, 11225-11232
    (26) Bi, Y.; Pan, X.; Chen, Lei.; Wan, Q. H. Journal of Chromatography A 2011, 1218, 3908-3914
    (27) Carpino, F.; Moore, L. R.; Chalmers, J. J.; Zborowski, M.; Williams, P. S. Journal of Physics : Conference Series 2005, 17, 174-180
    (28) Mori, S. Chromatographia 1986, 21(11), 643-644
    (29) Kesner, L. F.; Caldwell, K. D.; Myers, M. N.; Giddings, J. C. Analytical Chemistry 1976, 48, 1834-1839
    (30) Caldwell, K. D.; Gao, Y. S. Analytical Chemistry 1993, 65, 1764-1772
    (31) Somchue, W.; Siripinyanond, A.; Gale, B. K. Analytical Chemistry 2012, 84, 4993-4998
    (32) Tri, N.; Caldwell, K.; Beckett, R. Analytical Chemistry 2000, 72, 1823-1829
    (33) Johann, C.; Elsenberg, S.; Schuch, H.; Rösch, U. Analytical Chemistry 2015, 87, 4292-4298
    (34) Harris, D. C. Quantitative Chemical Analysis 8th; W. H. Freeman and Company New York 2010
    (35) Giddings, J. C. Journal of Chemical Education 1973, 50, 667-669
    (36) Gale, B. K.; Caldwell, K. D.; Franzier, A. B. Analytical Chemistry 2001, 73, 2345-2352
    (37) Ornthai, M.; Siripinyanond, A.; Gale, B. K. Analytical Chemistry 2016, 88, 1794-1803
    (38) Latham, A. H.; Freitas, R. S.; Schiffer, P.; Williams, M. E. Analytical Chemistry 2005, 77, 5055-5062
    (39) Li, A. P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele U. Journal of Applied Physics 1998, 84, 6023-6026
    (40) Jessensky, O.; Müller, F.; Gösele, U. Applied Physics Letters 1998, 72, 1173-1175
    (41) https://www.sigmaaldrich.com/catalog/product/aldrich/730785?lang=en®ion=TW, 2019.02.17
    (42) https://www.sigmaaldrich.com/catalog/product/aldrich/730807?lang=en®ion=TW&cm_sp=Insite-_-recent_fixed-_-recent5-1, 2019.02.17

    無法下載圖示 本全文未授權公開
    QR CODE