簡易檢索 / 詳目顯示

研究生: 陳佩怡
論文名稱: 新穎的三組分反應之開發與其結合一鍋化方式製備多官能基的烯類化合物
指導教授: 林文偉
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 217
中文關鍵詞: Morita-Baylis-Hillman反應三組分反應Tandem 反應
論文種類: 學術論文
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多組分反應在有機化學中扮演著重要的角色,它可結合三個或多個反應物,利用單一操作就可得到複合產物,是符合經濟效應與環保的合成方法。Baylis-Hillman反應為有效生成碳-碳鍵的方法之一,其產物為好的Michael acceptor,藉由親核試劑的加成可成功的應用於合成許多高官能基化合物。然而,Baylis-Hillman反應速度緩慢而最後得到Michael加成的產物通常需要花費數天的反應時間。
    本篇論文主要是以醛類、烷基丙烯酸酯和醯胺化合物在EtPPh2催化下進行tandem三組分反應合成出多官能基的產物。反應機構主要為醛類與烷基丙烯酸酯先進行Baylis-Hillman反應,接著醯胺化合物再Michael加成到Baylis-Hillman產物上即可得到三組分產物,產率為66-88%。除此之外,也開發出利用醛類、烷基乙烯基酮及不同親核試劑,在PPh3催化下進行tandem三組分反應,其產物可應用在一鍋化條件下合成出多官能基烯類化合物,反應時間為3-29.5小時,產率為80-98%,立體選擇性可高達E/Z = 97/3。

    The multi-component reaction plays an important role in organic chemistry. It allows generation of an adduct in a single operation from three or more reactants. Therefore, it has economic benefits and becomes one of useful “green” synthetic methods. The Baylis-Hillman reaction is a well-known method to create carbon- carbon bond. Numerous successful applications for syntheses of highly functional compounds were achieved by the Michael addition of nucleophiles toward the Baylis-Hillman adducts, which are good Michael acceptors, as routine protocols. However, the Baylis-Hillman reaction is very slow, and therefore the whole process often takes several days to obtain the final Michael product.
    We have successfully developed EtPPh2-catalyzed tandem three-component reaction of aldehyde, alkyl acrylate, and amide to afford the highly functional products (66-88% yields). The reaction mechanism is proposed to undergo the Morita-Baylis-Hillman reaction of aldehyde and alkyl acrylate followed by Michael addition of amide toward the corresponding adduct. Besides, a general procedure for one-pot syntheses of highly functional α,β-unsaturated ketones via tandem PPh3-catalyzed three-component reaction of aldehydes, alkyl vinylketones and amides is also developed. A wide variety of highly functional α,β-unsaturated ketones can be furnished in 80-98% yields with high stereoselectivity (E/Z up to 97: 3) within overall 3-29.5h.

    中文摘要 英文摘要 第一章 緒論 1 1-1 前言 1 1-2 Morita-Baylis-Hillman 反應 1 1-2-1 Morita-Baylis-Hillman 反應機構的探討 2 1-2-2 加速Baylis-Hillman 反應 4 1-2-3 Double Baylis-Hillman 反應 9 1-2-4 Baylis-Hillman 反應的應用 13 1-3 MCR 多組分反應 16 1-3-1 多組分反應起源 16 1-3-2 多組分反應的定義 17 1-4 Morita-Baylis-Hillman 反應應用於MCR 22 1-5 研究動機 24 第二章 實驗結果與論 25 2-1 Tandem 三組分反應的設計與合成 25 2-1-1 催化劑與溶劑篩選 26 2-1-2 取代基效應 27 2-1-3 以雜環胺類當親核試劑進行三組分反應 32 2-2 反應機構之探討 34 2-3 Tandem三組分反應經one-pot 方式得到多官能基烯類化合物 40 2-3-1 反應的設計與合成 40 2-3-2 取代基效應 41 2-3-3 不同親核試劑的運用 44 2-4 結論 48 第三章 實驗部分 49 3-1 分析儀器及基本實驗步驟 49 3-2 實驗步驟及光譜數據 51 3-2-1 一般實驗步驟 51 3-3 參考文獻 79 附錄一 81 1H-NMR、13C-NMR 光譜 82 附錄二 165 X-ray 單晶繞射結構解析與數據 166

    [1] a) K. Morita, Chem. Abstr. 1968, 69, 58828s; b) K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968, 41, 2815.
    [2] A. B. Baylis, M. E. D. Hillman, Chem. Abstr. 1972, 77, 34174q.
    [3] a) A. Ho, K. Cyrus, K. Kim, Eur. J. Org. Chem. 2005, 2005, 4829; b) L. Reddy, J. Fournier, B. Reddy, E. Corey, Org. Lett. 2005, 7, 2699; c) T. Motozaki, K. Sawamura, A. Suzuki, K. Yoshida, T. Ueki, A. Ohara, R. Munakata, K.-i.
    Takao, K.-i. Tadano, Org. Lett. 2005, 7, 2261; d) R. Jogireddy, M. Maier, J. Org. Chem. 2006, 71, 6999; e) X. Lei, J. Porco Jr, J. Am. Chem. Soc. 2006, 128, 14790.
    [4] H. Hoffmann, J. Rabe, Angew. Chem., Int. Ed. Engl. 1983, 22, 795.
    [5] a) J. S. Hill, N. S. Isaacs, Tetrahedron Lett. 1986,27, 5007; b) J. S. Hill, N. S.
    Isaacs, J. Phys. Org. Chem. 1990, 3, 285.
    [6] M. Bode, P. Kaye, Tetrahedron Lett. 1991, 32, 5611.
    [7] K. Price, S. Broadwater, H. Jung, D. McQuade, Org. Lett. 2005, 7, 147.
    [8] K. Price, S. Broadwater, B. Walker, D. McQuade, J. Org. Chem. 2005, 70, 3980.
    [9] a) J. Xu, J. Mol. Struct. (THEOCHEM) 2006, 767, 61; b) D. Roy, R. Sunoj, Org. Lett. 2007, 9, 4873; c)R. Raphael, V. Aggarwal, J. Harvey, J. Am. Chem. Soc. 2007, 129, 15513.
    [10] S. Rafel, J. Leahy, J. Org. Chem. 1997, 62, 1521.
    [11] Y. Hayashi, K. Okado, I. Ashimine, M. Shoji, Tetrahedron Lett. 2002, 43, 8683.
    [12] V. Aggarwal, D. Dean, A. Mereu, R. Williamss, J. Org. Chem. 2002, 67, 510.
    [13] V. Aggarwal, A. Mereu, G. Tarver, R. McCague, J. Org. Chem. 1998, 63,7183.
    [14] M. Kawamura, S. Kobayashi, Tetrahedron Lett. 1999, 40, 1539.
    [15] F. Coelho, W. Almeida, D. Veronese, C. Mateus, E. Silva Lopes, R. Rossi, G. Silveira, C. Pavam, Tetrahedron 2002, 58, 7437.
    [16] J. Rosa, C. Afonso, A. Santos, Tetrahedron 2001, 57, 4189.
    [17] a) M. Shi, C. Li, J. Jiang, Chem. Commun. 2001, 2001, 833; b) G. Ma, J. Jiang, M. Shi, Y. Wei, Chem. Commun. 2009, 2009, 5496.
    [18] K. Lee, S. Gowrisankar, Y. Lee, J. Kim, Tetrahedron 2006, 62, 8798.
    [19] S. Gowrisankar, H. Lee, J. Kim, J. Kim, Tetrahedron Lett. 2008, 49, 1670.
    [20] H. Imagawa, H. Saijo, T. Kurisaki, H. Yamamoto, M. Kubo, Y. Fukuyama, M. Nishizawa, Org. Lett. 2009, 11, 1253.
    [21] A. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    [22] M. Passerini, L. Simone, Gazz. Chim. Ital. 1921, 51, 126.
    [23] a) I. Ugi, Isonitrile Chemistry 1971; b) I. Ugi, A. Domling, W. Horl, Endeavour 1994, 18, 115.
    [24] N. Shindoh, Y. Takemoto, K. Takasu, Chem. Eur. J. 2009, 15, 12168.
    [25] C. Zhou, D. Emrich, R. Larock, Org. Lett. 2003, 5, 1579.
    [26] W. Wang, M. Yu, Tetrahedron Lett. 2004, 45, 7141.
    [27] M. Shi, Y. Liu, Org. Biomol.Chem. 2006, 4, 1468.

    無法下載圖示 本全文未授權公開
    QR CODE