研究生: |
藍錦全 Jung Chaing Lain |
---|---|
論文名稱: |
壹、對掌α,β-不飽和烯類與腈氧類偶極化合物之非鏡像[3+2]環化加成反應 貳、以樟腦架構為主的新對掌螯合劑之設計與合成 Diastereoselective 1,3-dipolar cycloadditions of nitrile oxides with Camphor-derived ,-unsaturated carbonyls |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
中文關鍵詞: | 樟腦 、腈氧類偶極化合物 |
英文關鍵詞: | camphor, nitrile oxide |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文分為兩部分:第一部份探討以對掌輔助劑控制立體化學中心的建立,主要以樟腦架構為主的對掌輔助劑exo-10,10-diphenyl-2,10-camphanediol 91和 camphor pyrazolidinone 92衍生之對掌烯類與腈氧類偶極化合物(nitrile oxides),進行非鏡像[3+2]環化加成反應,生成具有高非鏡像選擇性之異咢唑啉衍生物。以(R)-樟腦酮菘酸(ketopinic acid) 93為起始物,經三步合成步驟,製備含有雙醇官能基的對掌輔助劑91,總產率為64% 。以此對掌輔助劑衍生之α,β-不飽和酯99為受質,與腈氧類偶極化合物進行非鏡像[3+2]環化加成反應 ,以二氯甲烷為溶劑,在室溫條件下,得異咢唑啉類加成物,產率85%,非鏡像超越值(de)最高為56%;另一個具有三環構形之對掌輔助劑92,也是由(R)-樟腦酮菘酸經由三步合成步驟所得,總產率74% ,絕對之立體化學結構由X-ray單晶繞射確定。所衍生之α,β-不飽和醯胺100,與腈氧類偶極化合物進行非鏡像 [3+2] 環化加成反應,得到之異咢唑啉類衍生物的非鏡像選擇性相當高,經由1H-NMR分析其相關訊號,非鏡像超越值高達99% de,產率為90% 以上,在溫和反應條件下,可以將此對掌輔助劑切除,得到光學純度極高的異咢唑啉,產率53% ,對掌超越值(ee 值)高達99% ,對掌輔助劑camphor pyrazolidinone 92可回收(產率92% )再利用。另外,本論文亦探討在不同溶劑、不同共軛受質、添加路易士酸條件下對立體選擇性及反應性的影響。
第二部分係利用樟腦雙環分子架構,設計合成新的對掌螯合劑 (chiral ligand),以(R)-樟腦磺酸為起始物經兩步合成步驟,製備(3-oxo-camphorsulfonyl)imine 207,總產率51% 。以(R)-樟腦為起始物,將3號碳氧化得到camphorquinone 221。以化合物207或化合物221與單胺基或雙胺基衍生物,在酸性條件下,迴流,得到具有三芽基或四芽基的新對掌螯合劑,所合成之對掌螯合劑其分子結構經由1H-NMR、13C-NMR圖譜確定,絕對立體化學結構則由X-ray單晶繞射確認。
Abstract
Two camphor-derived chiral auxiliaries exo-10,10-diphenyl-2,10-camphandiol 91 and camphor pyrazolidinone 92 were prepared and used for asymmetric [3+2] nitrile oxide cycloaddition. exo-10,10-Diphenyl-2,10-camphandiol 91 with 1,3-diol functional groups can be prepared from the known (R)-ketopinic acid 93 in 3 steps with a total of 64% yield. Cycloaddition of the derived chiral acryloy ester 99 with various nitrile oxides in CH2Cl2 provided a disappointly low diastereomeric ratio (56% de) in a total of 85% yield. The second structural unique camphor pyrazolidinone 92 was prepared from the known (R)-ketopinic acid 93 in 3 steps in a total of 74% yield. The absolute stereochemistry of the chiral auxiliary was assigned unambiguously by X-ray crystallographic analysis. Cycloaddition of the derived N-enoyl pyrazolidinones 100 with various nitrile oxides in CH2Cl2 provided isoxazolines with high diastereomeric ratio in a total of 90% yield. The diastereomeric excess was determined by 1H-NMR anslysis on the relevant signals and the diastereomeric excess was determined to be higher than 99%. The chiral auxiliary can be easily cleavaged by treatment with L-selectride in THF at –78 oC to provide essentially optical pure 2-isoxazoline. The chiral auxiliary was recovered in good material yield. Excellent enantiomeric excess was obtained by means of optical rotation comparison.
The second part of this thesis focus on the design and synthesis of new chiral ligands. (3-Oxo-camphorsulfonyl)imine 207 is prepared from the known (R)-camphorsulfonic acid 204 in 2 steps in a total of 51% yield. Camphorquinone 221 is prepared from (R)-camphor 220. Treatment of camphorquinone 221 or 3-oxo-camphorsulfonylimine 207 with amine or diamine derivatives under acidic condition provide the desired ligands. The structures of the camphor-based ligands were assigned by 1H-NMR, 13C-NMR and the absolute stereochemistry was further confirmed unambiguously by X-ray crystallographic analyses.
1. Huisgen, R. Angew. Chem. 1963, 75, 604-637; Angew. Chem. Int. Ed. Engl. 1963, 14, 565.
2. 方俊民,何子樂,周大紓,陸天堯,郭悅雄,蔡蘊明,有機合成, 藝軒出版社, 1993, vol. 5, 227.
3. Pinnick, H. W. Org. React. 1990, 38, 655.
4. Christl, M. ; Huisgen, R. Chem. Ber. 1873, 106, 3345.
5. Lee, G. A. Synthesis 1982, 508.
6. Grundmann, C. ; Richter, R. J. Org. Chem. 1967, 32, 476
7. Garant, L. ; Sala, A. ; zecchi, G. J. Org. Chem. 1975, 40, 2403.
8. Kiegiel, J.; Jurczak, J. Tetrahedron Lett. 1999, 40, 5605.
9. Mukaiyama, T. ; hoshino, T. J. Am. Chem. Soc. 1960, 82, 5339.
10. Yao C.-F., Chen W.-C. and Lin Y.-M. Tetrahedron Lett. 1996, 37, 6339.
11. Kozikowski, A. P. ; Chen, Y. Y. J. Org. Chem. 1981, 46, 5248.
12. Asaoka, M. ; Mukuta, T. ; Takei, H. Tetrahedron Lett. 1981, 22, 735.
13. Moersch, G. W. ; Wittle, E. L.; Neuklis, W. A. J. Org. Chem. 1967, 32, 1387.
14. Jager, V. ; Grund, H. ; Schwab, W. Angew. Chem. Int. Ed. Engl. 1979, 18, 78.
15. Achill B.; Simonetta B.; Carmela D. R.; Gian P. P.; Vinicio Z. Tetrahedron Lett. 1995, 51, 7721.
16. (a).Curran, D. P.; Kim, B. H.; Daugherty, J.; Heffner, T. A. Tetrahedron Lett. 1988, 29, 3555. (b) Oppolzer, W.; Poli, W.; Kingma, A. J.; Starkeman, C.; Bernardineli, G. Helvetica Chimca Acta. 1987, 70, 2201-2214.
17. Oppolzer, W.; Kingma, A. J.; Pillai, S. K. Tetrahedron Lett. 1991, 37, 4893.
18. Kanemasa, S.; Onimura, K.; Wada, E.; Tanaka, J. Tetrahedron: Asymmetry 1991, 12, 1185.
19. Akiyama, T.; Okada, K; Ozaki, S. Tetrahedron Lett. 1992, 39, 5763.
20. Kanemasa, S.; Onimura, K.; Tetrahedron, 1992, 48, 8645.
21. Stack, J. A.; Heffner, T. A.; Geib, S. J.; Curran, D. P. Tetrahedron 1993, 5, 995.
22. Kim, Yong Hae; Kim, Sung Han; Park, Doo Han. Tetrahedron Lett. 1993, 38, 6063.
23. K. Inomata ; Y. Ukaji, Chem. Lett. 1996, 455.
24. Ying-Yuan Chu, Chia-Sheng Yu, Chiou-Juy Chen, Kung-Shuo Yang, Jung-Chaing Lain, Chun-Hui Lin, and Kwunmin Chen, J. Org. Chem. 1999, 64, 6993.