簡易檢索 / 詳目顯示

研究生: 蘇有鵬
Su, Yu-Peng
論文名稱: 穿戴式裝置評估登七星山之能量消耗的準確性研究
The accuracy of wearable devices to estimate energy expenditure in Mt. Qixing research
指導教授: 王鶴森
Wang, Ho-Seng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 45
中文關鍵詞: 心跳率卡路里攝氧量光學心率
英文關鍵詞: heart rate, calories, oxygen consumption, optical heart rate
DOI URL: http://doi.org/10.6345/NTNU201901049
論文種類: 學術論文
相關次數: 點閱:221下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:建立小油坑、冷水坑及苗圃步道登七星山主峰的能量消耗資訊並探討穿戴式裝置應用在登山健行能量消耗評估的準確性。方法:10名成年男性 (27.2 ± 4.7歲、175.6 ± 5.3公分、73.3 ± 8.1公斤),自三條步道登山口健行至七星山主峰後原路折返,所有受試者全程配戴CORTEX METAMAX 3B能量代謝分析儀 (CM3B) 測量能量消耗,同時配戴Garmin Forerunner 235 (小油坑路線) 或Garmin vivoactive 3 (冷水坑和苗圃路線) 光學心率錶記錄光學心率 (OHR) 及搭配胸式心率帶收集胸帶式心率 (HRM),並估算消耗卡路里。結果:一、小油坑路線:CM3B測得總能量消耗為502.8 ± 76.8大卡,上山時CM3B (333.1 ± 40.5大卡) 與HRM (361.8 ± 45.0大卡) 無顯著差異,但皆顯著低於OHR (391.1 ± 37.1大卡;p < .05),下山時HRM (223.1 ± 66.3大卡) 與OHR (253.7± 58.5大卡) 皆顯著高於CM3B (169.7 ± 44.2大卡);二、冷水坑路線:CM3B測得總能量消耗為708.0 ± 104.5大卡,且CM3B無論在上山/下山 (464.3 ± 63.8 / 243.7 ± 45.3大卡),皆顯著低於HRM (553.4 ± 109.8 / 316.3 ± 81.5大卡) 及OHR (592.8 ± 127.3 / 357.7 ± 101.5大卡);三、苗圃路線:CM3B測得總能量消耗為834.0 ± 134.7大卡,上山時CM3B (583.9 ± 99.2大卡) 與HRM (641.7 ± 122.2大卡) 無顯著差異,兩者皆顯著低於OHR (710.9 ± 117.6大卡),下山時HRM (377.3 ± 91.6大卡) 與OHR (432.5 ± 87.6大卡) 皆顯著高於CM3B (250.1 ± 41.1大卡)。在心率部分,三條路線在上山時OHR與HRM測得之平均心率皆無顯著差異;下山時僅小油坑OHR測得之平均心率顯著高於HRM。結論:完成三條登七星山主峰步道全程可消耗卡路里503大卡 (小油坑)、708大卡 (冷水坑) 及834大卡 (苗圃),而使用穿戴式光學心率錶進行能量消耗估計時,無論上、下山皆會顯著高估能量消耗,又以下山時估計的誤差較大。

    Purpose: Established the energy expenditure information of the Mt. Qixing Xiaoyoukeng, Lengshuikeng and Miaopu Trail and assess the accuracy of the wearable devices in the energy consumption assessment of hiking. Methods: 10 adult males (27.2 ± 4.7 years old, 175.6 ± 5.3 cm, 73.3 ± 8.1 kg), hike from three trail to the main peek of Mt. Qixing, then return with the same route with CORTEX METAMAX 3B (CM3B) for energy consumption, Garmin Forerunner 235 (Xiaoyoukeng Trail) and Garmin vivoactive 3 (Lengshuikeng and Miaopu Trail) with heart rate monitor (HRM) and Optical heart rate (OHR) estimated calories burned. Results: Xiaoyoukeng Trail, The total energy expenditure measured by CM3B was 502.8 ± 76.8 kcal, CM3B (333.1 ± 40.5 kcal) and HRM (361.8 ± 45.0 kcal) were not significantly different when going uphill, but OHR (391.1 ± 37.1 kcal) was significantly higher than the other two devices; HRM (223.1 ± 66.3 kcal) and OHR (253.7 ± 58.5 kcal) were significantly higher than CM3B (169.7 ± 44.2 kcal) when going downhill. Lengshuikeng Trail, the total energy expenditure measured by CM3B was 708.0 ± 104.5 kcal. Both uphill or downhill, CM3B (463.3 ± 63.8 / 243.7 ± 45.2 kcal) were significant lower than HRM (553.4 ± 109.8 / 316.3 ± 81.5 kcal) and OHR (592.8 ± 127.3 / 357.7 ± 101.5 kcal). Miaopu Trail , the total energy expenditure measured by CM3B was 834.0 ± 134.7 kcal. CM3B (583.9 ± 99.2 kcal) and HRM (641.7 ± 122.2 kcal) were not significantly different when going uphill, but OHR (710.9 ± 117.6 kcal) was significantly higher than the other two devices. HRM (377.3 ± 91.6 kcal) and OHR (432.5 ± 87.6 kcal) were significantly higher than CM3B (250.1 ± 41.1 kcal) when going downhill. As the heart rate, there was no significant difference in HRM when going uphill; OHR was significantly higher than HRM when going downhill in Xiaoyoukeng Trail. Conclusions: From three trail to Mt. Qixing main peak, the whole process can consume about 503 kcal (Xiaoyoukeng Trail), 708 kcal (Lengshuikeng Trail) and 834 kcal (Miaopu Trail), the wearable device with optical heart rate significantly overestimates the energy expenditure of hiking. Among them, and the deviation of downhill is higher.

    中文摘要 i 英文摘要 ii 目次 iii 表次 v 圖次 vi 附錄 vii 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞操作性定義 3 第五節 研究限制 4 第六節 研究重要性 5 第貳章 文獻探討 6 第一節 登山健行運動 6 第二節 穿戴式裝置用於測量心率及能量消耗評估的準確性 7 第三節 本章總結 14 第參章 研究方法 15 第一節 受試者 15 第二節 實驗時間與地點 15 第三節 實驗流程 15 第四節 實驗方法與步驟 17 第五節 資料處理 21 第肆章 結果 22 第一節 三條登山路線所需時間與運動強度 22 第二節 登山時心率帶與光學心率之表現 25 第三節 能量消耗計算及評估 27 第四節 穿戴式裝置與能量代謝分析儀測得之能量消耗相關 29 第伍章 討論與建議 30 第一節 七星山主峰登山步道運動強度及時間比較 30 第二節 光學心率的準確性 31 第三節 能量消耗評估的準確性 32 第四節 結論與建議 36 參考文獻 37 附錄 附錄一 身體活動問卷調查表 42 附錄二 受試者需知 43 附錄三 受試者同意書 44 附錄四 路線剖面圖 45 表次 表2-1 穿戴式裝置光學心率的準確性 10 表2-2 穿戴式裝置評估能量消耗的準確性 13 表3-1 Bruce Protocol測量最大攝氧量跑步機坡度及速度設定 18 表4-1 攝氧量、代謝當量及運動強度累積時間 24 表4-2 登七星山主峰步數統計 24 表4-3 登山健行期間心率帶及光學心率之比較 26 表4-4 不同裝置估算之能量消耗比較表 28 表4-5 穿戴式裝置與CM3B能量消耗之相關性 29 圖次 圖3-1 實驗流程圖 16 圖3-2 實驗裝備配置圖 19

    一、中文文獻
    方怡婷、周正亮、陳怡蓁、邱宏仁、陳俊忠、李雪楨、施怡芬 (2013)。登山活動對運動傷害、身體組成與大腿肌肉型態功能之探討。台灣復健醫學雜誌,41(4),215-223。 doi: 10.6315/2013.41(4)02
    林正常、王順正、吳忠芳 (2005)。日常生活身體活動的能量消耗研究。運動生理暨體能學報,2,55-66。 doi:10.6127/JEPF.2005.02.05
    衛生福利部國民健康署 (2017)。102-105年國民營養健康狀況變遷調查。衛生福利部 國民健康署肥胖防治網 https://obesity.hpa.gov.tw/TC/index.aspx
    歐雙磐、侯錦雄 (2007)。登山者遊憩專門化與登山類型偏好。戶外遊憩研究,20(4),51-74
    曹正、李瑞瓊 (1989)。觀光地區遊憩活動設施規劃設計與準則研究報告。交通部觀光局
    教育部體育署 (2017)。105年運動現況調查。https://isports.sa.gov.tw/Index.aspx

    二、英文文獻
    Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Medicine, 33(7), 517-538. doi: 10.2165/00007256-200333070-00004

    Ainsworth, B. E., Haskell, W. L., Whitt, M. C., Irwin, M. L., Swartz, A. M., Strath, S. J., . . . Leon, A. S. (2000). Compendium of Physical Activities: an update of activity codes and MET intensities. Medicine & Science in Sports & Exercise, 32(9), S498-S516.

    Astorino, T. A., Willey, J., Kinnahan, J., Larsson, S. M., Welch, H., & Dalleck, L. C. (2005). Elucidating determinants of the plateau in oxygen consumption at VO2max. British Journal of Sports Medicine, 39(9), 655-660. doi: 10.1136/bjsm.2004.016550

    Bruce, R. A., Kusumi, F., & Hosmer, D. (1973). Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. American Heart Journal, 85(4), 546-562. doi: 10.1016/0002-8703(73)90502-4

    Butte, N. F., Ekelund, U., & Westerterp, K. R. (2012). Assessing physical activity using wearable monitors: measures of physical activity. Medicine & Science in Sports & Exercise, 44(1S), S5-S12. doi: 10.1249/MSS.0b013e3182399c0e

    Case, M. A., Burwick, H. A., Volpp, K. G., & Patel, M. S. (2015). Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA, 313(6), 625-626. doi: 10.1001/jama.2014.17841

    Chowdhury, E. A., Western, M. J., Nightingale, T. E., Peacock, O. J., & Thompson, D. (2017). Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS One, 12(2), e0171720. doi: 10.1371/journal.pone.0171720

    de Müllenheim, P. Y., Chaudru, S., Emily, M., Gernigon, M., Mahé, G., Bickert, S., . . . Le Faucheur, A. (2018). Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure. Journal of Science and Medicine in Sport, 21(2), 166-172. doi: 10.1016/j.jsams.2017.10.004

    DiLorenzo, T. M., Bargman, E. P., Stucky-Ropp, R., Brassington, G. S., Frensch, P. A., & LaFontaine, T. (1999). Long-term effects of aerobic exercise on psychological outcomes. Preventive Medicine, 28(1), 75-85. doi: 10.1006/pmed.1998.0385

    Dooley, E. E., Golaszewski, N. M., & Bartholomew, J. B. (2017). Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth, 5(3). doi: 10.2196/mhealth.7043

    Gillinov, S., Etiwy, M., Wang, R., Blackburn, G., Phelan, D., Gillinov, A. M., . . . Desai, M. Y. (2017). Variable accuracy of wearable heart rate monitors during aerobic exercise. Medicine & Science in Sports & Exercise, 49(8), 1697-1703. doi: 10.1249/mss.0000000000001284

    Haskell, W. L., Lee, I.-M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., . . . BAUMAN, A. (2007). Physical activity and public health: updated recommendation for adults from the american college of sports medicine and the american heart association. Medicine & Science in Sports & Exercise, 39(8), 1423-1434. doi: 10.1249/mss.0b013e3180616b27

    Henriksen, A., Haugen Mikalsen, M., Woldaregay, A. Z., Muzny, M., Hartvigsen, G., Hopstock, L. A., & Grimsgaard, S. (2018). Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. Journal of Medical internet Research, 20 (3), e110. doi: 10.2196/jmir.9157

    Jo, E., Lewis, K., Directo, D., Kim, M. J., & Dolezal, B. A. (2016). Validation of biofeedback wearables for photoplethysmographic heart rate tracking. Journal of Sports Science & Medicine, 15(3), 540-547.

    K Spierer, D., Rosen, Z., Litman, L., & Fujii, K. (2015). Validation of photoplethysmography as a method to detect heart rate during rest and exercise. Journal of Medical Engineering & Technology, 39(5), 264-271. doi: 10.3109/03091902.2015.1047536

    Keytel, L. R., Goedecke, J. H., Noakes, T. D., Hiiloskorpi, H., Laukkanen, R., van der Merwe, L., & Lambert, E. V. (2005). Prediction of energy expenditure from heart rate monitoring during submaximal exercise. Journal of Sports Sciences, 23(3), 289-297. doi: 10.1080/02640410470001730089

    Lafrenz, A. J., Wingo, J. E., Ganio, M. S., & Cureton, K. J. (2008). Effect of ambient temperature on cardiovascular drift and maximal oxygen uptake. Medicine & Science in Sports & Exercise, 40(6), 1065-1071. doi: 10.1249/MSS.0b013e3181666ed7

    Navalta, J., Sedlock, D., Park, K.-S., & Park. (2004). Physiological responses to downhill walking in older and younger individuals. Journal of Exercise Physiology Online, 7(6), 45-51.

    Nourshahi, M., Abdoli, B., Rajaeian, A., Rahmani, H., Zahedi, H., Arefirad, T., & Kaviyani, M. (2011). Effects of mountaineering on physical fitness and quality of life in aged people. World Journal of Sport Sciences, 5(3), 149-157.

    Parak, J., & Korhonen, I. (2014, August). Evaluation of wearable consumer heart rate monitors based on photopletysmography. Paper presented at the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

    Park, H., Dong, S.-Y., Lee, M., & Youn, I. (2017). The role of heart-rate variability parameters in activity recognition and energy-expenditure estimation using wearable sensors. Sensors (Basel, Switzerland), 17(7), 1698. doi: 10.3390/s17071698

    Roos, L., Taube, W., Beeler, N., & Wyss, T. (2017). Validity of sports watches when estimating energy expenditure during running. BMC Sports Science, Medicine and Rehabilitation, 9, 22. doi: 10.1186/s13102-017-0089-6

    Shcherbina, A., Mattsson, C. M., Waggott, D., Salisbury, H., Christle, J. W., Hastie, T., . . . Ashley, E. A. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. Journal of Personalized Medicine, 7(2). doi: 10.3390/jpm7020003

    Sirichana, W., Dolezal, B. A., Neufeld, E. V., Wang, X., & Cooper, C. B. (2017). Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities. Journal of Science and Medicine in Sport, 20(8), 761-765. doi: 10.1016/j.jsams.2017.01.233

    Stahl, S. E., An, H.-S., Dinkel, D. M., Noble, J. M., & Lee, J.-M. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport & Exercise Medicine, 2(1). doi: 10.1136/bmjsem-2015-000106

    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156. doi: 10.1016/S0735-1097(00)01054-8

    Teh, K. C., & Aziz, A. R. (2002). Heart rate, oxygen uptake, and energy cost of ascending and descending the stairs. Medicine & Science in Sports & Exercise, 34(4), 695-9.

    Terbizan, D. J., Dolezal, B. A., & Albano, C. (2002). Validity of seven commercially available heart rate monitors. Measurement in Physical Education and Exercise Science, 6(4), 243-247. doi: 10.1207/S15327841MPEE0604_3

    Thompson, W. R. (2016). Worldwide survey of fitness trends for 2017. ACSM's Health & Fitness Journal, 20(6), 8-17. doi: 10.1249/fit.0000000000000252
    T
    hompson, W. R. (2017). Worldwide survey of fitness trends for 2018: The CREP Edition. ACSM's Health & Fitness Journal, 21(6), 10-19. doi: 10.1249/fit.0000000000000341

    Thompson, W. R. (2018). Worldwide survey of fitness trends for 2019. ACSM's Health & Fitness Journal, 22(6), 10-17. doi: 10.1249/fit.0000000000000438

    Wallen, M. P., Gomersall, S. R., Keating, S. E., Wisløff, U., & Coombes, J. S. (2016). Accuracy of heart rate watches: implications for weight management. PLoS One, 11(5). doi: 10.1371/journal.pone.0154420

    Wang, R., Blackburn, G., Desai, M., & et al. (2017). Accuracy of wrist-worn heart rate monitors. JAMA Cardiology, 2(1), 104-106. doi: 10.1001/jamacardio.2016.3340

    Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: the evidence. Canadian Medical Association Journal, 174(6), 801-809. doi: 10.1503/cmaj.051351

    Woodman, J. A., Crouter, S. E., Bassett, D. R. J., Fitzhugh, E. C., & Boyer, W. R. (2017). Accuracy of consumer monitors for estimating energy expenditure and activity type. Medicine & Science in Sports & Exercise, 49(2), 371-377. doi: 10.1249/mss.0000000000001090

    下載圖示
    QR CODE