簡易檢索 / 詳目顯示

研究生: 徐紹華
Hsu, Shao-Hua
論文名稱: 自動合併可能性C迴歸分群演算法
Automatic Merging Possibilistic C-Regression Algorithms
指導教授: 張少同
Chang, Shao-Tung
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 33
中文關鍵詞: 群集分析混合迴歸階層式分群法模糊C迴歸Alpha截集模糊迴歸可能性C迴歸自動合併可能性C迴歸
英文關鍵詞: Clusatering analysis, Mixture regression, Hierarchical clustering, Fuzzy c-regression, Alpha-cut fuzzy c-regression, Possibilistic c-regression, Automatic merging possibilistic c-regression
論文種類: 學術論文
相關次數: 點閱:132下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 群集分析(Clustering Analysis)是一種很實用的統計分析方法,它透過邏輯程序將具有共同特性的資料聚集到同一群,使得群組內的個體相似性高,而不同群組間的個體相似性低。常見的應用包括機器學習(machine learning)、模型辨識(pattern recognition)及影像分析(image analysis)等。
      混合迴歸(mixture regression)是群集分析重要的一環,而模糊分群是研究者常用的方法。傳統的模糊C迴歸(Fuzzy C-Regression;FCR)對初始值具有相當程度的依賴性,且容易受到離群值的影響。因此陸續有學者提出 Alpha截集模糊迴歸(α-cut Fuzzy C-Regression;α-cut FCR)、可能性C迴歸(Possibilistic C-Regression;PCR)等方法進行改善,使離群值的影響力變小,然而初始值的取以及資料群數的估計仍舊是PCR的兩大難題。
      在本篇論文中,我們提出了一個新的自動合併可能性C迴歸(Automatic Merging Possibilistic C-Regression;AM-PCR)分群演算法,先透過階層式分群法(Hirearchical Clustering)選取初始值,搭配一種新型合併的方式,使得迴歸模型的參數估計更為穩健,並且在分群過程中,自動決定最適當的群數。

    Cluster analysis is an useful statistical method grouping a set of objects which have common properties through logic programs; it makes objects in the same cluster similar to each other and those in different clusters dissimilar. Cluster analysis has been applied to machine learning, pattern recognition,image analysis, and many other fields.
    Mixture model is a vital branch of cluster analysis, and it is frequently analyzed by fuzzy clustering method. Traditional fuzzy c-regression (FCR) models depend heavily on initials and are sensitive to outliers; hence, several researches include α-cut fuzzy c-regression (α-cut FCR) and possibilistic c-regression (PCR) models were proposed to improve the weakness of FCR. However, the choice of initials and the estimation of cluster number are still difficult in mixture model analysis.
    In this paper, we proposed a new automatic merging possibilistic c-regression clustering algorithm; we choose initials by hirearchical clustering approach; we adopt a new type of merging approach to make the estimations for regression parameters more robust and determine the most suitable number of clusters automatically during implementation. The performance is discussed in comparison with traditional methods through simulation studies. The results demonstrate the superiority and usefulness of our proposed method.

    Contents I.Introduction 1 II.Fuzzy clustering method 4 2.1 Crisp, fuzzy, and possibilistic partitions 4 2.2 Fuzzy c-means clustering algorithm 5 2.3 Fuzzy C-Regression Models algorithm 5 2.4 α-cut implemented fuzzy clustering algorithms 8 III.Possibilistic clustering method 10 3.1 Possibilistic C-Means clustering algorithm 10 3.2 Possibilistic C-Regression models algorithm 11 IV.Automatic merging possibilistic clustering method 13 V.Automatic merging possibilistic c-regressions 15 VI.Numerical examples 23 6.1 Effctiveness comparison with FCR and FCRα 23 6.2 Robustness comparison with FCR and FCRα 26 6.3 Performance comparison for real data 29 VII.Conclusion 31 References 32

    [1] L.A.Zadeh,“Fuzzy sets,” Inform. Control, vol.8, pp. 338–353, 1965.
    [2] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms.New York: Plenum Press, 1981.
    [3] M. S. Yang, “A survey of fuzzy clustering,”Math.Comput Model.,vol.18, no.11,pp.1–16, 1993.
    [4] A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms for pattern recognition—Parts I and II,” IEEE Trans. Syst., Man, Cybern. B,Cybern., vol.29, no.6, pp.778–801, Dec. 1999.
    [5] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis:Methods for Classification Data Analysis and Image Recognition. New York:Wiley, 1999.
    [6] James C. Bezdek, Robert Ehrlich, and William Full, “The fuzzy c-means clustering algorithm,” Computers & Geosciences, vol.10, no.2-3,pp.191-203, 1984.
    [7] R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,”IEEE Trans. Fuzzy Syst., vol.1, no.2, pp.98–110, May 1993.
    [8] J. Yu and M. S. Yang, “Optimality test for generalized FCM and its application to parameter selection,” IEEE Trans. Fuzzy Syst., vol.13, no.1, pp.164–176, Feb.2005.
    [9] M. S. Yang, K. L. Wu, J. N. Hsieh, and J. Yu, “Alpha-cut implemented fuzzy clustering algorithms and switching regressions,” IEEE Trans. Syst., Man,Cybern. B. Cybern., vol.38, no.3, June 2008.
    [10] R. E. Quandt, “The estimation of the parameters of a linear regression system obeying two separate regimes,” Journal of the American Statistical Association 53 (1958) 873–880.
    [11] G. Chow, “Tests of the equality between two sets of coefficients in two linear regressions,” Journal of Econometrica 28 (1960) 561–605.
    [12] R. D. DeVeaux, “Mixtures of linear regressions,” Computational Statistical and Data Analysis 8 (1989) 227–245.
    [13] L. F. Lee, “Simulation estimation of dynamic switching regression and dynamic disequilibrium models—some Monte Carlo results,” Journal of Econometrics 78(1997) 179–204.
    [14] H. A. Freeman, S. K. Ehui, and M. Jabbar, “Credit constraints and smallholder Dairy production in the East African highlands: application of a switching regression model, Journal of Agricultural Economics 19 (1998) 33–44.
    [15] G. Peters, “A linear forecasting model and its application to economic data,” Journal of Forecasting 20 (2001) 315–328.
    [16] G. Alperovich, J. Deutsch, “An application of a switching regimes regression to the study of urban structure,” Journal of Regional Science 81 (2002) 83–98.
    [17] R. J. Hathaway and J. C. Bezdek,“Switching regression models and fuzzy clustering,” IEEE Transactions on Fuzzy Systems 1 (1993) 195–204.
    [18] S. T. Chang, K. P. Lu, and M. S. Yang, “Stepwise possibilistic c-regressions,”(manuscript submitted for publication).
    [19] M. Barni, V. Cappellini, and A. Mecocci, “Comments on ‘A possibilistic approach to clustering,” IEEE Trans. Fuzzy Syst., vol.4, no.3, pp.393–396,Aug. 1996.
    [20] M. S. Yang, Member, IEEE, and C. Y. Lai, “A robust automatic merging possibilistic clustering method,” IEEE Transactions on Fuzzy Systems, vol.19,no.1, pp.26–41, February 2011.
    [21] J. Yu, Q. Cheng, and H. Huang, “Analysis of the weighting exponent in the FCM,” IEEE Trans. Syst. Man, Cybern. B 34 (2004) 634–639.
    [22] D. O¨ zdemir, L. Akarun, “A fuzzy algorithm for color quantization of images,”Pattern Recognition 35 (2002) 1785–1791.
    [23] J.C. Bezdek, “Cluster validity with fuzzy sets,” Journal. Cybern. 3 (1974) 58–73.
    [24] Binu Thomas and Raju G, “A novel fuzzy clustering method for outlier detection in data mining,” International Journal of Recent Trends in Engineering, vol.1, no. 2, May 2009.
    [25] M. Barni, V. Cappellini, and A. Mecocci, “Comments on “A possibilistic approach to clustering”,” IEEE Trans. Fuzzy Syst., vol.4, no.3, pp.393–396,Aug. 1996.
    [26] M. S. Yang and K. L. Wu, “Unsupervised possibilistic clustering,” Pattern Recognition 39 (2006) pp.5–21.
    [27] N. A. Campbell and R. J. Mahon, “A multivariate study of variation in two species of Rock crab of the genus leptograpsus, “ Aust. J. Zool. 1974, 22, 417-25.
    [28] Elizabeth A. Cohen, “Some effects of inharmonic partials on interval perception,” Music Perception, vol.1, no.3, pp.323-349, Spring 1984.

    下載圖示
    QR CODE