簡易檢索 / 詳目顯示

研究生: 林裕勝
Yu-Sheng Lin
論文名稱: 細菌演化模糊控制器及其在兩輪移動載具控制上之應用研究
Bacterial Foraging Fuzzy Controllers and Its Application Study in Control of Two-Wheeled Vehicles
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 70
中文關鍵詞: 細菌覓食演算法兩輪移動載具卡爾曼濾波器模糊控制器
英文關鍵詞: Bacterial foraging algorithm, two-wheeled vehicles, Kalman filter, fuzzy controller
論文種類: 學術論文
相關次數: 點閱:245下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是將模糊控制理論結合細菌覓食演算法,調整模糊系統的設計參數應用於模糊控制系統,並應用在自行設計的兩輪移動載具。由於兩輪移動載具無法自主平衡,需要有控制器,才能達成自主平衡。系統控制核心為單晶片82G516,透過三軸加速度計與陀螺儀分別回傳角度與角速度的即時資訊,利用量測放大電路進行訊號處理,並在單晶片中建構數位濾波器(Kalman filter)、模糊控制器,使其輸出合適的PWM來控制兩輪移動載具的前進、後退並完成自我平衡的動作。從模擬的結果得知,透過細菌演化的方式,可以使得兩輪移動載具快速的穩定,並且從實作結果得知兩輪移動載具搭配模糊細菌演化系統,可以偵測人體重心,使兩輪移動載具前進、後退的功能。

    This thesis focuses on adjusting the design of fuzzy control systems through a combination of the fuzzy control theory and the bacterial foraging algorithm. In addition, for a self-designed two wheeled vehicle, because of the reason that two-wheeled vehicle is unable to be self-balancing, a controller is required for forming a control system. The control system kernel is Megawin 82G516 single chip. The real-time data of angle and angular velocity are transmitted respectively from 3-axis accelerometer and gyroscope to the control kernel. Through the measurement amplifier processes analog signal, along with the construction of digital filter (Kalman filter) and fuzzy controller in the single chip, the control system kernel outputs a suitable pulse width modulation (PWM) to control the two-wheeled vehicles to go forward and backward, and even to make it self-balancing. The simulation results indicate that the two-wheeled unstable vehicle becomes stable immediately through the bacterial evolution. Moreover, the experiment results show that the two-wheeled vehicle with fuzzy bacterial evolution system can detect the gravity center of body such that the two-wheeled vehicle can move forward and backward.

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 表 目 錄 vii 圖 目 錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 文獻回顧 2 1.4 論文架構 4 第二章 兩輪移動載具之硬體電路設計 5 2.1 系統架構 5 2.2 系統電源 6 2.3 車身機構 7 2.4 感測裝置與量測放大器 8 2.4.1 三軸加速度計ADXL335 8 2.4.2 陀螺儀IDG500 8 2.4.3 量測放大器 9 2.5 控制核心82g516 12 2.6 馬達驅動器 13 2.7 電池與馬達輪圈 14 2.8 藍芽傳輸模組 15 第三章 數位濾波器與模糊控制器 16 3.1 數位濾波器(Kalman Filter) 16 3.1.1 Kalman Filter原理 16 3.1.2 Kalman Filter濾波結果 17 3.2 模糊控制器 20 3.2.1 模糊控制方塊圖 22 3.2.2 兩輪移動載具動態方程式 22 3.2.3 模糊控制行動示意圖 25 3.2.4 歸屬函數 26 3.2.5 模糊規則 28 3.2.6 模糊推論 29 3.2.7 解模糊化 30 3.2.8 模擬結果 30 第四章 模糊細菌覓食演算法 33 4.1 細菌演算法理論與基礎 33 4.1.1 趨藥性(Chemotaxis) 33 4.1.2 群聚效應(Swarming) 34 4.1.3 繁殖(Reproduction) 35 4.1.4 消除與分散(Elimination and Dispersal) 35 4.2 細菌覓食演算法 35 4.3 模糊細菌演化 37 4.3.1 細菌演化模糊控制器 37 4.3.2 細菌演化模糊控制器後件部最佳化 38 第五章 實驗結果 46 5.1 模糊控制器-程式流程 46 5.2 模糊控制器-無扶桿自主平衡 47 5.3 模糊控制器-有扶桿自主平衡 50 5.4 模糊控制器-載人自主平衡 54 5.5 細菌演化模糊控制器-有扶桿自主平衡 55 5.6 細菌演化模糊控制器-載人自主平衡 58 5.7 細菌演化模糊控制器-騎乘轉彎 59 第六章 結論與未來展望 66 6.1 研究結論 66 6.2 未來展望 66 參考文獻 67

    [1] http://www.segway.com/, 2013.
    [2] 汪志宇,兩輪移動車模糊控制,國立臺灣師範大學應用電子科技研究所碩士論文,台灣,2012年。
    [3] 呂偉誠,模糊細菌演化系統與伺服馬達控制之應用,國立臺灣師範大學應用電子科技研究所碩士論文,台灣,2011年。
    [4] Kuwata, T., Tanaka, M. ; Wada, M., Umetani, T. and Ito, M.,“Localization of Segway RMP,” SICE Annual Conference, Japan, 2011, pp. 1675-1680.
    [5] F. Grasser, A. D'Arrigo, S. Colombi and A.C. Rufer, “JOE: a mobile,inverted pendulum,” IEEE Transactions on Industrial Electronics, vol.39, No.1, pp. 107-114, Feb. 2002.
    [6] XiaogangRuan and JianxianCai, “Fuzzy Backstepping controllers for Two-Wheeled Self-Balancing Robot,” International Asia Conference on Informatics in Control, Automation and Robotics, Bangkok, 2009, pp. 166-169.
    [7] Chaoquan Li, Fangxing Li, Shusan Wang, Fuquan Dai, Yang Bai, Gao Xueshan and Kejie Li, “Dynamic Adaptive Equilibrium Control for a Self-Stabilizing Robot,” IEEE International Conference on Robotics and Biomimetics (ROBIO),China, 2010, pp. 609-614.
    [8] Pinto, L.J., Dong-Hyung Kim, JiYeong Lee and Chang-Soo Han, “Development of a Segway Robot for an Intelligent Transport System,” IEEE/SICE International Symposium on System Integration (SII), Fukuoka , 2012, pp. 710-715.
    [9] Draz, M.U., Ali, M.S. ,Majeed, M. , Ejaz, U. and Izhar, U., “Segway Electric Vehicle,” International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, 2012, pp. 34-39.
    [10] Ben Niu, Yunlong Zhu, Xiaoxian He and Xiangping Zeng , “Optimum Design of PID Controllers Using Only a Germ of Intelligence,” Proceedings of the 6th World Congress on Intelligent Control and Automation, China, 2006, pp. 3584-3588.
    [11] Zhaoguo CHEN, Youxin LUO and Yuehua CAI , “Optimization for PID Control Parameters on Hydraulic Servo Control System Based on Bacterial Foraging Oriented by Particle Swarm Optimization,” International Conference on Information Engineering and Computer Science ICIECS, China, 2009, pp. 1-4.
    [12] John Oyekan and Huosheng Hu , “A Novel Bacterial Foraging Algorithm for Automated tuning of PID controllers of UAVs,” Proceedings of the 2010 IEEE International Conference on Information and Automation, China, 2010, pp. 693-698.
    [13] Jalilvand, A. , Vahedi, H. and Bayat, A. , “Optimal Tuning of the PID Controller for a Buck Converter Using Bacterial Foraging Algorithm,” 2010 International Conference on Intelligent and Advanced Systems (ICIAS), Malaysia, 2010, pp. 1-5.
    [14] 李垂憲,兩輪自走車之設計與實現-以NIOS為核心之基本控制,國立中央大學電機工程研究所碩士論文,台灣,2006年。
    [15] 周烜達,二輪自走車之設計與實現,國立中央大學電機工程研究所碩士論文,台灣,2007年。
    [16] Hung-Cheng Chen , “Bacterial Foraging Based Optimization Design of Fuzzy PID Contollers,” 4th International Conference on Intelligent Computing, ICIC, China, 2008, pp. 841-849.
    [17] Shui-Chun Lin, Ching-Chih Tsai and Hsu-Chih Huang, “Nonlinear Adaptive Sliding-Mode Control Design for Two-Wheeled Human Transportation Vehicle,” IEEE International Conference on Systems, Man and Cybernetics, SMC, San Antonio, TX, 2009, pp. 1965-1970.
    [18] Ching-Chih Tsai, Hsu-Chih Huang and Shui-Chun Lin, “Adaptive Neural Network Control of a Self-Balancing Two-Wheeled Scooter,” IEEE Transactions on Industrial Electronics, vol.57, NO.4, pp. 1420-1428, Apr. 2010.
    [19] Te-Jen Su, Guan-Yu Chen, Jui-Chuan Cheng and Chia-Jung Yu , “Fuzzy PID Controller Design using Synchronous Bacterial Foraging Optimization,” 2010 3rd International Conference on Information Sciences and Interaction Sciences (ICIS), China, 2010, pp.639-642.
    [20] Te-Jen Su, Li-Wei Chen, Chia-Jung Yu and Jui-Chuan Cheng , “Fuzzy PID Controller Design using Self Adaptive Bacterial Foraging Optimization,” Proceedings of SICE Annual Conference, Taipei, 2010, pp. 2604-2607.
    [21] 吳應德,可載人之智慧型兩輪平衡控制車之研製,聖約翰科技大學電機工程研究所碩士論文,台灣,2010年。
    [22] 王志凱,智慧型兩輪車之平台研製與平衡控制,聖約翰科技大學電機工程研究所碩士論文,台灣,2009年。
    [23] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-3175. http://www.cs.unc.edu/~{welch, gb}
    [24] 江惠健,模糊理論與應用,台灣,2006年。
    [25] 王進德,類神經網路與模糊控制理論入門與應用,台灣,2011年。
    [26] K. M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control,” IEEE Control Systems Magazine, vol. 22, pp. 52–67, Jun. 2002.
    [27] Mario A. Mu˜noz, Saman K. Halgamuge, Wilfredo Alfonso, and Eduardo F. Caicedo, “Simplifying the Bacteria Foraging Optimization Algorithm,” 2010 IEEE Congress on Evolutionary Computation (CEC), Barcelona, 2010, pp. 1-7.

    下載圖示
    QR CODE