簡易檢索 / 詳目顯示

研究生: 鄭倢安
Cheng, Chieh-An
論文名稱: 氨暴露導致斑馬魚胚胎離子調節損傷及成魚行為改變
Ammonia exposure impairs ion regulation in zebrafish embryos and changes behaviors in adult zebrafish
指導教授: 林豊益
Lin, Li-Yih
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 斑馬魚離子細胞表皮角質細胞細胞凋亡氧化壓力粒線體損傷行為改變
英文關鍵詞: ammonia, apoptosis, ionocyte, keratinocyte, mitochondria damage, oxidative stress, zebrafish, behavioral alteration
DOI URL: http://doi.org/10.6345/NTNU202100082
論文種類: 學術論文
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氨(包含氣態的NH3以及離子態的NH4+)為魚類代謝胺基酸後產生的主要含氮廢物,也是常見的環境汙染物。當魚體內氨濃度提高,將會導致魚隻中樞神經受損,抽搐、昏迷甚至死亡。然而,目前研究中多著重在高氨處理後魚類的適應機制,關於氨對魚隻離子調節功能及行為的毒性作用尚不清楚。本研究分為兩個部分,首先利用斑馬魚胚胎作為模式動物,探討氨如何對胚胎離子調節功能造成損傷,接著利用斑馬魚成魚作為模式動物,評估氨處理後斑馬魚的行為改變。在胚胎毒性研究中,浸泡於不同濃度(0、10、15、20 mM)的氯化銨溶液中96小時(4-100 hpf)後,觀察胚胎卵黃囊上離子細胞及表皮角質細胞。結果指出,20 mM氨處理後離子細胞內氧化壓力上升(CellROX螢光亮度顯著上升)且由Rhodamine 123標定的具粒線體活性離子細胞數目顯著下降,顯示粒線體活性降低。此外,以細胞免疫螢光染色標定20 mM氨處理後凋亡細胞數目顯著上升,並觀察到表皮角質細胞結構損傷。綜合以上結果發現,在高氨處理下,斑馬魚胚胎離子細胞及表皮角質細胞損傷,導致斑馬魚胚胎失去體表屏障,體內離子大量流失。而在行為實驗中,將斑馬魚浸泡於不同濃度(0、1、5、10 mM)的氯化銨溶液中4小時後,對游泳行為、社交行為、學習與記憶能力等面向進行不同實驗。結果顯示1 mM氨處理時可以促進學習記憶能力;5 mM時焦慮及恐懼程度提升且群游下降;10 mM氨處理時活動力、社交行為及焦慮程度下降,但恐懼程度上升。綜上所述,在不同濃度氨暴露以及不同的環境刺激下,斑馬魚的游泳、社交、學習等行為改變,而這些改變可能使斑馬魚存活率下降,進一步使個體適存度降低。

    Ammonia (including NH3 and NH4+) is a toxic nitrogenous product of fish, and also a common environmental pollutant. Accumulation of ammonia is toxic to fishes causing convulsions, coma and death. However, the toxic effects of ammonia on fish ion regulation and behaviors are not fully understood. The 1st purpose of this study was to investigate how ammonia impairs ion regulation in fish embryos, and 2nd purpose was to investigate how ammonia influences behaviors in adult fish. Zebrafish were used in this study because it is a popular animal model for toxicological studies. In embryonic experiments, zebrafish embryos were exposed to NH4Cl (0, 10, 15, or 20 mM) for 96 h (4-100 hpf) and the ionocytes and keratinocytes in the skin were examined. Results showed that 20 mM NH4Cl exposure increased the oxidative stress (indicated by CellROX staining) and decreased mitochondria activity (indicated by rhodamine-123 staining) in the skin ionocytes. Also, 20 mM NH4Cl increased apoptosis (indicated by caspase immunostaining) and impaired the apical structure of keratinocytes. Taken together, high concentration ammonia impaired the skin ionocytes and keratinocytes, causing severe ion losses in zebrafish embryos. In behavior experiments, adult zebrafish were exposed to NH4Cl (0, 1, 5 or 10 mM) for 4 h, and several behaviors including swimming behavior, social behavior, learning and memory were analyzed. The results showed that 1 mM NH4Cl promoted learning behavior; 5 mM NH4Cl increased the anxiety level and fear response, but decreased the shoaling behavior; 10 mM NH4Cl decreased swimming activity, social behaviors, and anxiety level but increased fear response. Taken together, ammonia exposure altered the social behaviors, learning and memory in adult zebrafish.

    摘要 1 Abstract 2 研究背景 4 淡水魚氨的生成及排氨機制 4 氨的毒性機制 5 氨對魚類的毒性研究 6 斑馬魚模式動物 7 斑馬魚胚胎表皮角質細胞(Keratinocyte)及離子細胞(Ionocyte) 7 斑馬魚行為實驗 8 氨對魚類行為的影響 9 研究目的 11 實驗流程圖 12 一、胚胎毒性實驗流程圖 12 二、成魚行為實驗流程圖 12 實驗設計 13 實驗1:96小時氯化銨(15 mM)處理後對胚胎基因表現量的影響。 13 實驗2:96小時氯化銨(10、15、20 mM)處理後對胚胎卵黃囊上離子細胞的影響。 13 實驗3:96小時氯化銨(10、15、20 mM)處理對胚胎卵黃囊上具粒線體活性細胞數目的影響。 13 實驗4:72小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上細胞氧化壓力的影響。 14 實驗5:96小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上細胞凋亡的影響。 14 實驗6:96小時氯化銨(15、20 mM)處理後所導致胚胎卵黃囊上表皮細胞凋亡現象。 14 實驗7:96小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上表皮型態的影響。 15 實驗8:96小時氯化銨(5、10、15、20 mM)處理後胚胎逃跑反應。 15 實驗9:4小時氯化銨(1、5、10 mM)處理後對成魚游泳行為的影響。 15 實驗10:4小時氯化銨(5、10 mM)處理後對成魚焦慮程度的影響。 15 實驗11:4小時氯化銨(5、10 mM)處理後對成魚社交行為的影響。 16 實驗12:4小時氯化銨(5、10 mM)處理後對成魚社交認知影響。 16 實驗13:4小時氯化銨(5、10 mM)處理後對成魚膽量的影響。 16 實驗14:4小時氯化銨(5、10 mM)處理後對成魚學習和記憶的影響。 16 實驗15:4小時氯化銨(5、10 mM)處理後對成魚恐懼反應的影響。 17 實驗16:4小時氯化銨(1、5、10 mM)處理後對成魚腦內基因表現量的影響。 17 材料與方法 18 實驗動物 18 氯化銨的配置與處理 18 定量即時聚合酶連鎖反應(Quantitative real time polymerase chain reaction) 19 免疫組織化學染色(immunohistochemistry, IHC) 19 活體螢光染劑 20 離子細胞活體染色標記 21 活性氧化物測定 21 細胞凋亡測定 22 影像分析 22 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 22 觸碰誘發反應(Touch-evoked response assay) 23 新魚缸探索測試(Novel tank diving test) 23 社交偏好測試(Social preference test) 24 社交認知測試(Social recognition test) 24 群游測試(Shoaling test) 25 主動迴避測試(Active Avoidance test) 25 開放空間測試(Open field test) 26 新事物探索測試(Novel object approach test) 26 暗示條件恐懼制約測試(Cued fear conditioning test) 26 統計方法 27 結果 29 實驗1:96小時氯化銨(15 mM)處理後對胚胎基因表現量的影響。 29 實驗2:96小時氯化銨(10、15、20 mM)處理後對胚胎卵黃囊上離子細胞的影響。 29 實驗3:96小時氯化銨(10、15、20 mM)處理對胚胎卵黃囊上具粒線體活性細胞數目的影響。 29 實驗4:72小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上細胞氧化壓力的影響。 30 實驗5:96小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上細胞凋亡的影響。 30 實驗6:96小時氯化銨(15、20 mM)處理後胚胎卵黃囊上表皮細胞凋亡現象。 30 實驗7:96小時氯化銨(15、20 mM)處理後對胚胎卵黃囊上表皮型態的影響。 31 實驗8:96小時氯化銨(5、10、15、20 mM)處理後胚胎逃跑反應。 31 實驗9:4小時氯化銨(1、5、10 mM)處理後對成魚游泳行為的影響。 32 實驗10:4小時氯化銨(5、10 mM)處理後對成魚焦慮程度的影響。 32 實驗11:4小時氯化銨(5、10 mM)處理後對成魚社交行為的影響。 32 實驗12:4小時氯化銨(5、10 mM)處理後對成魚社交認知影響。 33 實驗13:4小時氯化銨(5、10 mM)處理後對成魚膽量的影響。 33 實驗14:4小時氯化銨(5、10 mM)處理後對成魚學習和記憶的影響。 33 實驗15:4小時氯化銨(5、10 mM)處理後對成魚恐懼反應的影響。 34 實驗16:4小時氯化銨(1、5、10 mM)處理後對成魚腦內基因表現量的影響。 34 討論 35 氨處理對斑馬魚胚胎離子細胞及離子調節影響 35 斑馬魚胚胎離子細胞粒線體損傷及過量氧化壓力之關係 35 斑馬魚胚胎表皮角質細胞凋亡與胚胎死亡機制 36 氨處理對斑馬魚胚胎生理功能影響 36 氨處理對斑馬魚成魚活動力及焦慮程度的影響 37 氨處理對斑馬魚成魚社交行為的影響 38 氨處理對斑馬魚成魚學習與記憶能力的影響 39 氨處理後對斑馬魚整體行為影響 40 氨處理斑馬魚作為其他研究模型 41 結論 43 參考文獻 44

    Agetsuma, M., Aoki, T., Aoki, R., Okamoto, H., 2012. Cued fear conditioning in zebrafish (Danio rerio), Zebrafish protocols for neurobehavioral research. Springer, pp. 257-264.

    Albrecht, J., Norenberg, M.D., 2006. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44, 788-794.

    Amo, R., Fredes, F., Kinoshita, M., Aoki, R., Aizawa, H., Agetsuma, M., Aoki, T., Shiraki, T., Kakinuma, H., Matsuda, M., 2014. The habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive active avoidance of danger. Neuron 84, 1034-1048.

    Arillo, A., Margiocco, C., Melodia, F., Mensi, P., Schenone, G., 1981. Ammonia toxicity mechanism in fish: studies on rainbow trout (Salmo gairdneri Rich.). Ecotoxicology and environmental safety 5, 316-328.

    Baldisserotto, B., Martos-Sitcha, J.A., Menezes, C.C., Toni, C., Prati, R.L., Garcia, L.d.O., Salbego, J., Mancera, J.M., Martínez-Rodríguez, G., 2014. The effects of ammonia and water hardness on the hormonal, osmoregulatory and metabolic responses of the freshwater silver catfish Rhamdia quelen. Aquatic Toxicology 152, 341-352.

    Baracca, A., Sgarbi, G., Solaini, G., Lenaz, G., 2003. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochimica et biophysica acta (BBA)-bioenergetics 1606, 137-146.

    Beaumont, M., Butler, P., Taylor, E., 2003. Exposure of brown trout Salmo trutta to a sublethal concentration of copper in soft acidic water: effects upon gas exchange and ammonia accumulation. Journal of Experimental Biology 206, 153-162.

    Beaumont, M., Butler, P., Taylor, E., 1995. Plasma ammonia concentration in brown trout in soft acidic water and its relationship to decreased swimming performance. Experimental Biology 198, 2213-2220.

    Beaumont, M., Taylor, E., Butler, P., 2000. The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water. Journal of Experimental Biology 203, 2229-2236.

    Benli, A.Ç.K., Köksal, G., Özkul, A., 2008. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 72, 1355-1358.

    Binstock, L., Lecar, H., 1969. Ammonium ion currents in the squid giant axon. The Journal of general physiology 53, 342-361.

    Blaser, R., Gerlai, R., 2006. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behavior research methods 38, 456-469.

    Brett, J., 1964. The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Board of Canada 21, 1183-1226.

    Brusilow, S.W., 2002. Hyperammonemic encephalopathy. Medicine 81, 240-249.

    Buss, R.R., Drapeau, P., 2001. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. Journal of Neurophysiology 86, 197-210.

    Cachat, J., Stewart, A., Grossman, L., Gaikwad, S., Kadri, F., Chung, K.M., Wu, N., Wong, K., Roy, S., Suciu, C., 2010. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature protocols 5, 1786-1799.

    Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment international 32, 831-849.

    Cardoso, E., Chiarini‐Garcia, H., Ferreira, R., Poli, C., 1996. Morphological changes in the gills of Lophiosilurus alexandri exposed to un‐ionized ammonia. Journal of Fish Biology 49, 778-787.

    Chase, I.D., Seitz, K., 2011. Self-structuring properties of dominance hierarchies: a new perspective, Advances in genetics. Elsevier, pp. 51-81.

    Chazotte, B., 2011. Labeling mitochondria with MitoTracker dyes. Cold Spring Harbor Protocols 2011, pdb. prot5648.

    Cheng, C.-H., Yang, F.-F., Ling, R.-Z., Liao, S.-A., Miao, Y.-T., Ye, C.-X., Wang, A.-L., 2015. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Aquatic Toxicology 164, 61-71.

    Ching, B., Chew, S.F., Wong, W.P., Ip, Y.K., 2009. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquatic Toxicology 95, 203-212.

    Chou, M.-Y., Amo, R., Kinoshita, M., Cherng, B.-W., Shimazaki, H., Agetsuma, M., Shiraki, T., Aoki, T., Takahoko, M., Yamazaki, M., 2016. Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352, 87-90.

    Colwill, R.M., Raymond, M.P., Ferreira, L., Escudero, H., 2005. Visual discrimination learning in zebrafish (Danio rerio). Behavioural Processes 70, 19-31.

    Dong, X., Zhang, X., Qin, J., Zong, S., 2013. Acute ammonia toxicity and gill morphological changes of Japanese flounder P aralichthys olivaceus in normal versus supersaturated oxygen. Aquaculture Research 44, 1752-1759.

    Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.K., Tien, D.H., 2009. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural brain research 205, 38-44.

    Engeszer, R.E., Wang, G., Ryan, M.J., Parichy, D.M., 2008. Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proceedings of the National Academy of Sciences 105, 929-933.

    Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews 85, 97-177.

    Fan, P., Szerb, J., 1993. Effects of ammonium ions on synaptic transmission and on responses to quisqualate and N-methyl-D-aspartate in hippocampal CA1 pyramidal neurons in vitro. Brain research 632, 225-231.

    Górny, M., Wnuk, A., Kamińska, A., Kamińska, K., Chwatko, G., Bilska-Wilkosz, A., Iciek, M., Kajta, M., Rogóż, Z., Lorenc-Koci, E., 2019. Glutathione deficiency and alterations in the sulfur amino acid homeostasis during early postnatal development as potential triggering factors for schizophrenia-like behavior in adult rats. Molecules 24, 4253.

    Gaikwad, S., Stewart, A., Hart, P., Wong, K., Piet, V., Cachat, J., Kalueff, A.V., 2011a. Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behavioural processes 87, 224-230.

    Gaikwad, S., Stewart, A., Hart, P., Wong, K., Piet, V., Cachat, J., Kalueff, A.V., 2011b. Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behavioural processes 87, 224-230.

    Green, J., Collins, C., Kyzar, E.J., Pham, M., Roth, A., Gaikwad, S., Cachat, J., Stewart, A.M., Landsman, S., Grieco, F., 2012. Automated high-throughput neurophenotyping of zebrafish social behavior. Journal of neuroscience methods 210, 266-271.

    Grobler, J.M., Wood, C.M., 2018. The effects of high environmental ammonia on the structure of rainbow trout hierarchies and the physiology of the individuals therein. Aquatic Toxicology 195, 77-87.

    Hall, C.S., 1934. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative psychology 18, 385.

    Hermenegildo, C., Monfort, P., Felipo, V., 2000. Activation of N‐methyl‐D‐aspartate receptors in rat brain in vivo following acute ammonia intoxication: Characterization by in vivo brain microdialysis. Hepatology 31, 709-715.

    Horng, J.-L., Lin, L.-Y., Huang, C.-J., Katoh, F., Kaneko, T., Hwang, P.-P., 2007. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, R2068-R2076.

    Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.

    Hwang, P.-P., Chou, M.-Y., 2013. Zebrafish as an animal model to study ion homeostasis. Pflügers Archiv-European Journal of Physiology 465, 1233-1247.

    Hwang, P.-P., Lee, T.-H., Lin, L.-Y., 2011. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301, R28-R47.

    Hwang, P.P., Lin, L.Y., 2013. Gill ionic transport, acid-base regulation, and nitrogen excretion. The physiology of fishes 4, 205-233.

    Ip, A.Y., Chew, S.F., 2010. Ammonia production, excretion, toxicity, and defense in fish: a review. Frontiers in physiology 1, 134.

    Jin, J., Wang, Y., Wu, Z., Hergazy, A., Lan, J., Zhao, L., Liu, X., Chen, N., Lin, L., 2017. Transcriptomic analysis of liver from grass carp (Ctenopharyngodon idellus) exposed to high environmental ammonia reveals the activation of antioxidant and apoptosis pathways. Fish & Shellfish Immunology 63, 444-451.

    Jones, L.J., Norton, W.H., 2015. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behavioural brain research 276, 171-180.

    Kopp, C., Misslin, R., Vogel, E., Rettori, M.-C., Delagrange, P., Guardiola-Lemaıtre, B., 1997. Effects of day-length variations on emotional responses towards unfamiliarity in Swiss mice. Behavioural processes 41, 151-157.

    Kosenko, E., Kaminsky, M., Kaminsky, A., Valencia, M., Lee, L., Hermenegildo, C., Felipo, V., 1997. Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free radical research 27, 637-644.

    Krause, J., Butlin, R.K., Peuhkuri, N., Pritchard, V.L., 2000. The social organization of fish shoals: a test of the predictive power of laboratory experiments for the field. Biological Reviews 75, 477-501.

    Lang, T., Peters, G., Hoffmann, R., Meyer, E., 1987. Experimental investigations on the toxicity of ammonia: effects on ventilation frequency, growth, epidermal mucous cells, and gill structure of rainbow trout Salmo gairdneri. Diseases of aquatic organisms.

    Larmoyeux, J.D., Piper, R.G., 1973. Effects of water reuse on rainbow trout in hatcheries. The Progressive Fish-Culturist 35, 2-8.

    Le Guellec, D., Morvan-Dubois, G., Sire, J.-Y., 2003. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). International Journal of Developmental Biology 48, 217-231.

    Levin, E.D., Bencan, Z., Cerutti, D.T., 2007. Anxiolytic effects of nicotine in zebrafish. Physiology & behavior 90, 54-58.

    Lin, L.-Y., Horng, J.-L., Kunkel, J.G., Hwang, P.-P., 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. American Journal of Physiology-Cell Physiology 290, C371-C378.

    Lin, L.-Y., Zheng, J.-A., Huang, S.-C., Hung, G.-Y., Horng, J.-L., 2020. Ammonia exposure impairs lateral-line hair cells and mechanotransduction in zebrafish embryos. Chemosphere, 127170.

    MacRae, C.A., Peterson, R.T., 2015. Zebrafish as tools for drug discovery. Nature reviews Drug discovery 14, 721-731.

    Madara, J.L., 1998. Regulation of the movement of solutes across tight junctions. Annual review of physiology 60, 143-159.

    Malik, E., Gyore, K., Olah, J.J.A.h.S., 1986. Effect of ammonia on gill tissues of common carp(Cyprinus carpio L.). Aquacultura hungarica 5, 97-105.

    Mallin, M.A., McIver, M.R., Robuck, A.R., Dickens, A.K., 2015. Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. Water, Air, & Soil Pollution 226, 407.

    Marcaida, G., Felipo, V., Hermenegildo, C., Miñana, M.-D., Grisolia, S., 1992. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS letters 296, 67-68.

    Maximino, C., de Brito, T.M., da Silva Batista, A.W., Herculano, A.M., Morato, S., Gouveia Jr, A., 2010. Measuring anxiety in zebrafish: a critical review. Behavioural brain research 214, 157-171.

    McKenzie, D., Shingles, A., Claireaux, G., Domenici, P., 2009. Sublethal concentrations of ammonia impair performance of the teleost fast-start escape response. Physiological and Biochemical Zoology 82, 353-362.

    Miller, N., Gerlai, R., 2012. From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio). PloS one 7, e48865.

    Mitchell, S.J., Cech Jr, J.J., 1983. Ammonia-caused gill damage in channel catfish (Ictalurus punctatus): confounding effects of residual chlorine. Canadian Journal of Fisheries and Aquatic Sciences 40, 242-247.

    Mittal, S., Pandey, A.K., 2014. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed research international 2014.

    Mugoni, V., Camporeale, A., Santoro, M.M., 2014. Analysis of oxidative stress in zebrafish embryos. JoVE (Journal of Visualized Experiments), e51328.

    Murthy, C.R., Rama Rao, K., Bai, G., Norenberg, M.D., 2001. Ammonia‐induced production of free radicals in primary cultures of rat astrocytes. Journal of neuroscience research 66, 282-288.

    Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K., Hirose, S., 2007. Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293, R1743-R1753.

    Neville, H.J., Schmidt, A., Kutas, M., 1983. Altered visual-evoked potentials in congenitally deaf adults. Brain research 266, 127-132.

    Niknahad, H., Jamshidzadeh, A., Heidari, R., Zarei, M., Ommati, M.M., 2017. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clinical and Experimental Hepatology 3, 141.

    Perry, S., Goss, G., Laurent, P., 1992. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Canadian Journal of Zoology 70, 1775-1786.

    Qureshi, K., Rao, K.R., Qureshi, I.A., 1998. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochemical research 23, 855-861.

    Randall, D.J., Tsui, T., 2002. Ammonia toxicity in fish. Marine pollution bulletin 45, 17-23.

    Rao, K.R., Mawal, Y.R., Qureshi, I.A., 1997. Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neuroscience letters 224, 83-86.

    Rao, V.R., Murthy, C.R., Butterworth, R.F., 1992. Glutamatergic synaptic dysfunction in hyperammonemic syndromes. Metabolic brain disease 7, 1-20.

    Redner, B.D., Stickney, R.R., 1979. Acclimation to ammonia by Tilapia aurea. Transactions of the American Fisheries Society 108, 383-388.

    Ressler, R.L., Maren, S., 2019. Synaptic encoding of fear memories in the amygdala. Current opinion in neurobiology 54, 54-59.

    Richards, J.G., Mercado, A.J., Clayton, C.A., Heigenhauser, G.J., Wood, C.M., 2002. Substrate utilization during graded aerobic exercise in rainbow trout. Journal of experimental biology 205, 2067-2077.

    Roberts, A., 2000. Early functional organization of spinal neurons in developing lower vertebrates. Brain research bulletin 53, 585-593.

    Rose, C., Kresse, W., Kettenmann, H., 2005. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. Journal of biological chemistry 280, 20937-20944.

    Sah, P., Westbrook, R., Lüthi, A., 2008. Fear conditioning and long‐term potentiation in the amygdala: what really is the connection? Annals of the New York Academy of Sciences 1129, 88-95.

    Saint‐Amant, L., Drapeau, P., 1998. Time course of the development of motor behaviors in the zebrafish embryo. Journal of neurobiology 37, 622-632.

    Schliess, F., Görg, B., Fischer, R., Desjardins, P., Bidmon, H.J., Herrmann, A., Butterworth, R.F., Zilles, K., Häussinger, D., 2002. Ammonia induces MK‐801‐sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. The FASEB Journal 16, 739-741.

    Schmidt, W., Wolf, G., Grüngreiff, K., Linke, K., 1993. Adenosine influences the high-affinity uptake of transmitter glutamate and aspartate under conditions of hepatic encephalopathy. Metabolic brain disease 8, 73-80.

    Shamay-Tsoory, S.G., Abu-Akel, A., 2016. The social salience hypothesis of oxytocin. Biological psychiatry 79, 194-202.

    Sheline, C., Wei, L., 2006. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 140, 235-246.

    Shih, T.-H., Horng, J.-L., Hwang, P.-P., Lin, L.-Y., 2008. Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. American Journal of Physiology-Cell Physiology 295, C1625-C1632.

    Shih, T.-H., Horng, J.-L., Lai, Y.-T., Lin, L.-Y., 2013. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

    Shingles, A., McKenzie, D., Taylor, E., Moretti, A., Butler, P., Ceradini, S., 2001. Effects of sublethal ammonia exposure on swimming performance in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology 204, 2691-2698.

    Shukitt-Hale, B., Erat, S.A., Joseph, J.A., 1998. Spatial learning and memory deficits induced by dopamine administration with decreased glutathione. Free Radical Biology and Medicine 24, 1149-1158.

    Sinha, A.K., Liew, H.J., Diricx, M., Kumar, V., Darras, V.M., Blust, R., De Boeck, G., 2012. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). Aquatic toxicology 114, 153-164.

    Sison, M., Gerlai, R., 2010. Associative learning in zebrafish (Danio rerio) in the plus maze. Behavioural brain research 207, 99-104.

    Smart, G., 1976. The effect of ammonia exposure on gill structure of the rainbow trout (Salmo gairdneri). Journal of Fish Biology 8, 471-475.

    Stewart, A.M., Gaikwad, S., Kyzar, E., Kalueff, A.V., 2012. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain research 1451, 44-52.

    Stewart, W.J., Cardenas, G.S., McHenry, M.J., 2013. Zebrafish larvae evade predators by sensing water flow. Journal of Experimental Biology 216, 388-398.

    Su, J.Y., Storey, K.B., 1994. Regulation of phosphofructokinase from muscle and liver of rainbow trout by protein phosphorylation. Biochemistry and molecular biology international 33, 1191.

    Tudorache, C., Blust, R., De Boeck, G., 2008. Social interactions, predation behaviour and fast start performance are affected by ammonia exposure in brown trout (Salmo trutta L.). Aquatic Toxicology 90, 145-153.

    Wicks, B., Joensen, R., Tang, Q., Randall, D., 2002. Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquatic Toxicology 59, 55-69.

    Wilkie, M.P., Pamenter, M.E., Duquette, S., Dhiyebi, H., Sangha, N., Skelton, G., Smith, M.D., Buck, L.T., 2011. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. Journal of Experimental Biology 214, 4107-4120.

    Willard-Mack, C., Koehler, R.C., Hirata, T., Cork, L., Takahashi, H., Traystman, R., Brusilow, S., 1996. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71, 589-599.

    Williams, T.A., Bonham, L.A., Bernier, N.J., 2017. High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish. General and Comparative Endocrinology 254, 97-106.

    Wong, B., Candolin, U., 2015. Behavioral responses to changing environments. Behavioral Ecology 26, 665-673.

    Wood, C., Evans, D., 1993. Ammonia and urea metabolism and excretion [in fish]. CRC Mar Sci Ser, 379-426.

    Xu, X., Scott-Scheiern, T., Kempker, L., Simons, K., 2007. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiology of learning and memory 87, 72-77.

    Zaleski, J., Bryła, J., 1977. Effects of oleate, palmitate, and octanoate on gluconeogenesis in isolated rabbit liver cells. Archives of biochemistry and biophysics 183, 553-562

    無法下載圖示 電子全文延後公開
    2026/01/22
    QR CODE