研究生: |
黃品翰 Huang, Pin-Han |
---|---|
論文名稱: |
不對稱有機連鎖[4+2]環化加成反應 Asymmetric Organocascaded Synthesis of Spiro Bicyclo[2.2.2]octan-2-one Frameworks |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 有機不對稱催化 、雙環[2.2.2]辛酮 、[4+2]環加成反應 |
英文關鍵詞: | bicyclic, [4+2] cycloaddition |
DOI URL: | https://doi.org/10.6345/NTNU202204514 |
論文種類: | 學術論文 |
相關次數: | 點閱:83 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用環己烯酮及(E)-2-(3-苯亞丙二烯基)-氫茚-1,3-二酮,利用天然物奎寧衍生之一級胺催化劑經由2-胺基-1,3-雙烯的活化方式,進行[4+2]環加成反應,建構雙環[2.2.2]辛烷架構。透過一系列條件篩選以甲苯為最佳溶劑,於室溫下添加20 mol%的一級胺催化劑及20 mol%的苯甲酸,可得到帶有一個螺環四級碳及三個掌性中心之雙環[2.2.2]辛酮,其產率可高達91%、非鏡像選擇性>20:1及98%鏡像選擇性。此反應亦能進行一鍋化地利用肉桂醛、1,3-茚二酮及環己烯酮經由Knoevenagel/ [4+2]環加成連鎖反應,有效的合成預期雙環[2.2.2]辛-2-酮產物且仍保有優異的非鏡像選擇性>20:1及97%鏡像選擇性。
A method to build the framework of bicyclo[2.2.2]octanes via 2-amino-1,3-dienes system with quinine-derived primary amine catalyst was disclosed. According to optimized conditions, cyclohexenones and 2-aryllidene-1,3-indanediones were dissolved in toluene at the room temperature, then 20 mol% of primary amine catalyst and 20 mol% of benzoic acid were added. The substituted bicyclo[2.2.2]octanones, bearing one spiro quaternary carbon and three chiral centers, were obtained in high yields (up to 91 %), excellent diastereoselective ( up to >20:1 dr) and enantioselective (98% ee). This reaction was also operated with cinnamaldehyde, 1,3-indandione and cyclohexenone, through Knoevenagel condensation/ [4+2] cycloaddition in one-pot manner to get desired product bicyclic with the high level of stereoselectivities (>20:1 dr, 97% ee).
1. Clayden, N. Greeves & S. Warren. Organic Chemistry. Oxford University Press. 2012. ISBN 0199270295.
2. Nicolaou, K. C and T Montagnon. Molecules That Changed The World. Weinheim: Wiley-VCH, 2008. Print.
3. Carter, Kimberly. Organic Chemistry. Delhi: Global Media, 2007. Print.
4. Zhu, X.; Giordano, Q.-S.; Holloway, H. W.; Perry, T. A.; Lahiri, D. K.; Brossi, A.; Greig, N. J. Med. Chem. 2003, 46, 5222
5. Bredig, G.; Fiske, W. S. Biochem. Z. 1912, 7.
6. List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000, 122, 2395.
7. MacMillan, D. W. C. Nature 2008, 455, 304.
8. List, B. Chem. Rev. 2007, 107, 5413.
9. Jacobsen, E. N.; Doyle, A. G. Chem. Rev. 2007, 107, 5713.
10. Jiang, H.; Albrecht, Ł.; Jørgensen, K. A. Chem. Sci. 2013, 4, 2287.
11. Donslund, B. S.; Johansen, T. K.; Poulsen, P. H.; Halskov, K. S.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 13860.
12. Skrzyńska, A.; Przydacz A.; Albrecht Ł. Org. Lett. 2015, 17, 5682.
13. Stiller, J.; Poulsen, P. H.; Cruz, D. C.; Dourado, J.; Davis, R. L.; Jørgensen K. A. Chem. Sci. 2014, 5, 2052.
14. Moss, G. P. Pure &Appl. Chem. 1998, 70, 143
15. (a) Wermuth, C. G. The Practice Of Medicinal Chemistry. Amsterdam: Elsevier/Academic Press, 2008. Print.
(b) Zimmerman, J. L. Critical Care Clinics 2012, 28, 517.
(c) Li, S.-H.; Wang, J.; Niu, X.-M.; Shen, Y.-H.; Zhang, H.-J.; Sun, H.-D.; Li, M.-L.; Tian, Q.-E.; Lu, Y.; Cao, P.; Zheng, Q.-T. Org. Lett. 2004, 6, 4327.
(d) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J. Am. Chem. Soc. 1982, 104, 5560.
(e) Paterson, R.R.M.; Simmonds, M.J.S.; Kemmelmeier, C.; Blaney, W.M. Mycological Research, 1990, 94, 538.
16. Diels, O.; Alder,K. Liebigs, J. Ann. Chem. 1928, 460, 98.
17. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
18. Xu, d.-Q.; Xia, A.-B.; Luo, S.-P.; Tang, J.; Zhang, S.; Jiang, J.-R.; Xu, Z.-Y. Angew. Chem. Int. Ed. 2009, 48, 3821.
19. Halskov, K. S.; Johansen, T. K.; Davis, R. L.; Steurer, M.;Jensen, F.; Jørgensen, K. A. J. Am. Chem. Soc. 2012, 134, 12943.
20. Feng, X.; Zhou, Z.; Zhou, R. Zhou, Q.-Q.; Dong, L.; Chen Y.-C. J. Am. Chem. Soc. 2012, 134, 19942.
21. Rodríguez-Escrich, C.; Davis, R. C.; Jiang, H.; Stiller, J.; Johansen, T. K.; Jørgensen, K. A. Chem. Eur. J. 2013, 19, 2932.
22. Mose, R.; Jensen, M. E.; Preegel, G.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2015, 54, 13630.
23. Enders, D.; Hüttl M. R. M.; Grondal1, C.; Raabe, G. Nature 2006, 441, 861.
24. Cao, C.-L.; Sun, X.-L.; Kang, Y.-B.; Tang, Y. Org. Lett. 2007, 9, 4151.
25. Lefranc, A.; Gremaud, L.; Alexakis, A. Org. Lett. 2014, 16, 5242.
26. Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am.Chem. Soc. 2004, 126, 5962.
27. Tan, B.; Lu, Y.; Zeng, X.; Chua, P.-J.; Zhong, G. Org. Lett. 2010, 12, 2682.
28. Yu, D.-F.; Wang, Y.; Xu, P.-F. Adv. Synth. Catal. 2011, 353, 2960.
29. Dell’Amico, L.; Rassu, G.; Zambrano, V.; Sartori, A.; Curti, C.; Battistini, L.; Pelosi, G.; Casiraghi, G.; Zanard, F. J. Am.Chem. Soc. 2014, 136, 11107.
30. Thayumanavan, R.; Dhevalapally, B.; Sakthivel, K.; Tanaka, F.; Barbas III, C. F. Tetrahedron Lett. 2002, 43, 3817.
31. Ramachary, D. B.; Anebouselvy, K.; Chowdari, N. S.; Barbas III, C. F. J. Org. Chem. 2004, 69, 5838.
32. (a) Clive, D. L. J.; Kong, X.; Paul, C. P. Tetrahedron, 1996, 52, 6085.
(b) Yoakim, C.; Ogilvie, W. W.; Goudreau, N.; Naud, J.; Haché, B.; O’Meara, J. A.; Cordingley, M. G.; Archambault, J.; White, P. W. Bioorg. Med. Chem. Lett. 2003, 13, 2539.
(c) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G., Chem. Comm. 2002, 2478
(d) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G.; Mathison, C. J. N. J. Am. Chem. Soc., 2005, 127, 8872.
(e) Pizzirani, D.; Roberti, M.; Grimaudo, S.; Cristina, A. D.; Pipitone, R. M.; Tolomeo, M.; Recanatini M. J. Med. Chem. 2009, 52, 6936.
33. Kuan, H.-H.; Chien C.-H.; Chen, K. Org. Lett., 2013, 15, 2880.
34. Anwar, S.; Li, S.-M.; Chen, K. Org. Lett., 2014, 16, 2993.
35. Chang, Y.-P.; Gurubrahamam, R.; Chen, K. Org. Lett., 2015, 17, 2908.
36. Inayama, S.; Mamoto, K.; Shibata, T.; Hirose, T. J. Med. Chem. 1976, 19, 433.