簡易檢索 / 詳目顯示

研究生: 林渼葶
Lin, Mei-Ting
論文名稱: The use of weak-value metrology in the gravitational-wave detector
The use of weak-value metrology in the gravitational-wave detector
指導教授: 林豐利
Lin, Feng-Li
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 56
中文關鍵詞: Gravitational Wave DetectorQuantum NoiseStandard Quantum LimitWeak Values
英文關鍵詞: Gravitational Wave Detector, Quantum Noise, Standard Quantum Limit, Weak Values
DOI URL: http://doi.org/10.6345/NTNU201901074
論文種類: 學術論文
相關次數: 點閱:102下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Weak-value metrology refers to quantum measurement with a weak measurement process and post-selection. The outcome, called weak values, can be amplified beyond the eigenvalues of the observable; however, there is some debate on the usefulness of weak-value metrology in increasing the sensitivity of a gravitational wave detector. In this thesis, we investigated the sensitivity limit with regard to quantum shot noise and radiation pressure noise. For this purpose, we formulated an input-output
    relation with a model via weak-value metrology, which allowed us to understand the optical processes under a condition wherein the weak value is applied intuitively. However, we found that the sensitivity of the modified model was not improved as the modified model destroyed the symmetry of the interferometer, which contributed to additional noise. Despite signal amplification, increasing sensitivity to detect more gravitational wave events is more vital.

    Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii 1Introduction 1 1.1 Introduction to Gravitational Waves . . . . . . . . . . . . . . . . . .3 1.2 Introduction to Gravitational-Wave Detection . . . . . . . . . . . . .5 1.2.1 The basic idea of interferometer . . . . . . . . . . . . . . . . .5 1.2.2 Fabry–Perot arm cavities . . . . . . . . . . . . . . . . . . . .8 1.2.3 Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.3 Introduction to Weak Measurements and Weak Values . . . . . . . .9 1.3.1 Difference between strong and weak measurements . . . . . .11 1.3.2 Weak-value amplification . . . . . . . . . . . . . . . . . . . .15 1.4 Gravitational Wave Detector via Weak Measurement . . . . . . . . .16 2 Mathematical Description of Conventional Gravitational Wave Interferometers 18 2.1 Quantization of the Dynamics . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Quantum States of the Optical Field . . . . . . . . . . . . . . . . . . 21 2.2.1 Fock or number state . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.3 Squeezed state . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Basic Dynamic Processes of the Optical Field . . . . . . . . . . . . .26 2.3.1 Light propagation in the interferometer . . . . . . . . . . . . .26 2.3.2 Dynamics of the test mass . . . . . . . . . . . . . . . . . . . 29 2.4 Input–Output Relation of Basic Optomechanical System Model . . .30 2.4.1 A single end mirror . . . . . . . . . . . . . . . . . . . . . . . .30 2.4.2 Input–output relation . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Standard Quantum Limit . . . . . . . . . . . . . . . . . . . . . . . .39 3 Gravitational-Wave Detector Using Weak Values 41 3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 3.2 Weak-Value Metrology in Gravitational-wave Detector . . . . . . . .42 3.3 Input–Output Relation Using Weak Values . . . . . . . . . . . . . . .46 3.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.5 Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Conclusion 53 Bibliography 55

    [1] Harry, Gregory M., and LIGO Scientific Collaboration. ”Advanced LIGO: the
    next generation of gravitational wave detectors.” Classical and Quantum Gravity
    27.8 (2010): 084006.
    [2] Aasi, Junaid, et al. ”Advanced ligo.” Classical and quantum gravity 32.7 (2015):
    074001.
    [3] Acernese, F., et al. ”Advanced Virgo: a second-generation interferometric gravitational wave detector.” Classical and Quantum Gravity 32.2 (2014): 024001.
    [4] Somiya, Kentaro. ”Detector configuration of KAGRA–the Japanese cryogenic
    gravitational-wave detector.” Classical and Quantum Gravity 29.12 (2012): 124007.
    [5] Aso, Yoichi, et al. ”Interferometer design of the KAGRA gravitational wave detector.” Physical Review D 88.4 (2013): 043007.
    [6] Abbott, Benjamin P., et al. ”Observation of gravitational waves from a binary
    black hole merger.” Physical review letters 116.6 (2016): 061102.
    [7] Abbott, Benjamin P., et al. ”Prospects for observing and localizing gravitationalwave transients with Advanced LIGO, Advanced Virgo and KAGRA.” Living Reviews in Relativity 21.1 (2018): 3.
    [8] Abbott, Benjamin P., et al. ”GW170817: observation of gravitational waves from
    a binary neutron star inspiral.” Physical Review Letters 119.16 (2017): 161101.
    [9] Aharonov, Yakir, David Z. Albert, and Lev Vaidman. ”How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100.”
    Physical review letters 60.14 (1988): 1351
    [10] Dixon, P. Ben, et al. ”Ultrasensitive beam deflection measurement via interferometric weak value amplification.” Physical review letters 102.17 (2009): 173601.
    [11] Braginsky, V. B. ”Classical and quantum restrictions on the detection of weak
    disturbances of a macroscopic oscillator.” Zh. Eksp. Teor. Fiz 53 (1967): 1434-1441.
    [12] Braginsky, Vladimir B., Vladimir Borisovich Braginsky, and Farid Ya Khalili.
    Quantum measurement. Cambridge University Press, 1995.
    [13] Caves, Carlton M., et al. ”On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle.” Reviews of Modern
    Physics 52.2 (1980): 341.
    [14] Nakamura, Kouji, and Masa-Katsu Fujimoto. ”Extension of the input-output
    relation for a Michelson interferometer to arbitrary coherent-state light sources:
    Gravitational-wave detector and weak-value amplification.” Annals of Physics 392
    (2018): 71-92.
    [15] Nishizawa, Atsushi, Kouji Nakamura, and Masa-Katsu Fujimoto. ”Weak-value
    amplification in a shot-noise-limited interferometer.” Physical Review A 85.6
    (2012): 062108.
    [16] Nishizawa, Atsushi. ”Weak-value amplification beyond the standard quantum
    limit in position measurements.” Physical Review A 92.3 (2015): 032123.
    [17] Miao, Haixing. Exploring macroscopic quantum mechanics in optomechanical
    devices. Springer Science & Business Media, 2012.
    [18] Corbitt, Thomas, Yanbei Chen, and Nergis Mavalvala. ”Mathematical framework
    for simulation of quantum fields in complex interferometers using the two-photon
    formalism.” Physical Review A 72.1 (2005): 013818.
    [19] Chen, Yanbei. ”Macroscopic quantum mechanics: theory and experimental concepts of optomechanics.” Journal of Physics B: Atomic, Molecular and Optical
    Physics 46.10 (2013): 104001.
    [20] Ma, Yiqiu. Optomechanical Physics in the Design of Gravitational Wave Detectors. Diss. University of Western Australia, 2015.
    [21] Caves, Carlton M., and Bonny L. Schumaker. ”New formalism for two-photon
    quantum optics. I. Quadrature phases and squeezed states.” Physical Review A
    31.5 (1985): 3068.
    [22] Schumaker, Bonny L., and Carlton M. Caves. ”New formalism for two-photon
    quantum optics. II. Mathematical foundation and compact notation.” Physical Review A 31.5 (1985): 3093.
    [23] Schumaker, Bonny L., and Carlton M. Caves. ”New formalism for two-photon
    quantum optics. II. Mathematical foundation and compact notation.” Physical Review A 31.5 (1985): 3093.
    [24] Danilishin, Stefan L., and Farid Ya Khalili. ”Quantum measurement theory in
    gravitational-wave detectors.” Living Reviews in Relativity 15.1 (2012): 5.
    [25] Kimble, H. Jeff, et al. ”Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or
    output optics.” Physical Review D 65.2 (2001): 022002.

    下載圖示
    QR CODE