研究生: |
蘇旭琳 Su, Hsu-Lin |
---|---|
論文名稱: |
在不同資料型態下使用混合模型進行分析之程序探討 Procedures for Analyzing Data with Multi-factor or Multi-dimension Latent Class Structure |
指導教授: |
陳柏熹
Chen, Po-Hsi |
學位類別: |
博士 Doctor |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 148 |
中文關鍵詞: | 多因素潛在類別 、多向度潛在類別 、因素混合模型 、試題反應理論混合模型 |
英文關鍵詞: | multi-factor latent class, multi-dimension latent class, factor mixture model, item response theory mixture model |
DOI URL: | http://doi.org/10.6345/NTNU201900139 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為,探討在「多因素潛在類別」和「多向度潛在類別」情境下,分析連續和二元資料型態的正確程序。本研究以混合模型為基礎,提出不同分析程序,並在因素個數 / 向度個數、因素相關/向度相關、潛在類別個數、潛在類別分離程度各個自變項之下,檢視其對於模式選擇正確率、參數估計和分類結果正確性的影響,並將分析程序相互對照比較,選出最佳程序提供未來分析實徵資料之參考。結果發現,當各個潛在類別的因素不變性程度為強假設,並搭配訊息量指標作為模式判斷依據時,程序一:「先判斷因素結構 / 向度結構,再判斷潛在類別個數,逐步決定最佳結果」和程序三:「假設不同潛在類別個數和不同因素結構 / 向度結構的組合,再判斷最佳適配模型」的表現優於程序二:「先判斷潛在類別個數,再判斷因素結構 / 向度結構,逐步決定最佳結果」。此外,因素相關 / 向度相關和潛在類別分離程度是影響模式判斷正確率的重要變項。最後,作者針對未來研究和實務的應用提出相關建議。
Multi-factor and multi-dimension structure exist in many test conditions along with continuous and binary responses respectively. And, population heterogeneity exits, too. Thus, in this study, we proposed three analysis procedures based on factor mixture model and item response theory mixture model to analyze data in context of the multi-factor / multi-dimension latent class. Simulations were also manipulated with different levels of factor numbers / dimension numbers, factor correlation / dimension correlation, numbers of latent class and class separation. The result showed that the procedures of “factor / dimension structure first then class number”(procedure 1) and “factor / dimension structure and class number considered simultaneously”(procedure 3) can mostly select the correct model using information criterion, and yielded precise parameter estimation and classification accuracy. It would be appropriate to choose procedure 1 and 3 when strong measurement invariance was assumed while using information criterion. Finally, study limitations and suggestions for future investigations were provided.
一、中文文獻
王郁琮、溫福星(2011)。混合因素分析對群體異質性之探索:以國中生學業困擾二元資料為例。教育與心理研究,34,37-63。
林奕宏、Wilson, M.(2013)。以試題反應理論為基礎之處理多向度潛在類別資料的兩種方法。慈濟大學教育研究學刊,9,223-254。
許育齡、梁朝雲(2012)。探究想像力的意涵與特徵-探索性與驗證性因素分析之發現。教育心理學報,44(2),349-372。
陳柏熹(2006)。能力估計方法對多向度電腦化適性測驗測量精準度的影響。教育心理學報,38(2),195-211。
張素珍、李佩瑾、郭伯臣、林佳樺(2008)。應用HIRT於實徵資料分析-以國小六年級數學小數的除法單元為例。測驗統計年刊,18,51-66。
區雅倫、陳清平(2001)。大學入學考試中心興趣量表:使用手冊。臺北市:大學入學考試中心。
鄭蕙如(2006)。國中生數學內容知識與數學認知能力之混合Rasch模式分析研究(未出版之博士論文)。國立臺灣師範大學,台北市。
二、西文文獻
Adams, R., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1-23.
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317–332.
Allan, N. P., Raines, A. M., Capron, D. W., Norr, A. M., Zvolensky, M. J., & Schmidt, N. B.(2014). Identification of anxiety sensitivity classes and clinical cut-scores in asample of adult smokers: Results from a factor mixture model. Journal of Anxiety Disorders, 28, 696-703.
Alexeev, N., Templin, J., & Cohen, A. S.(2011). Spurious latent classes in the mixture Rasch Model. Journal of Educational Measurement, 48(3), 313–332.
Arminger, G., Stein, P., & Wittenberg, J. (1999). Mixtures of conditional mean- and covariance-structure models. Psychometrika, 64(4), 475-494.
Bartholomew, D. J., & Knott, M. (1999). Latent variables models and factor analysis. London: Arnold.
Bartolucci, F.(2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141–157.
Bacci, S., Bartolucci, F., & Gnaldi, M.(2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communications in Statistics - Theory and Methods, 43(4), 787-800.
Baghaei, P., & Carstensen, C. H. (2013, March 5). Fitting the mixed Rasch model to a reading comprehension test: identifying reader types. Practical Assessment, Research & Evaluation, 18, Article 5. Retrieved July 20, 2019, from: http://pareonline.net/getvn.asp?v=18&n=5
Bozdogan, H. (1987). Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345–370.
Choi, I.-H., & Wilson, M.(2015). Multidimensional classification of examinees using the mixture random weights linear logistic test model. Educational and Psychological Measurement, 75(1), 78–101.
Cho, S.-J., & Cohen, A. S. (2010). Multilevel mixture IRT model with an application to DIF. Journal of Educational and Behavioral Statistics, 35, 336-370.
Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement, 42, 133-148.
De Boeck, P., Cho, S. J., & Wilson, M.(2011). Explanatory secondary dimension modeling of latent differential item functioning. Applied Psychological Measurement, 35(8), 583–603.
DiStefano, C., & Morgan,G. B. (2014). A comparison of diagonal weighted least squares robust estimation techniques for ordinal data. Structural Equation Modeling: A Multidisciplinary Journal, 21, 425–438.
Dolan, C. V., & van der Maas, H. L. J. (1998). Fitting multivariate normal finite mixtures subject to structural equation modeling. Psychometrika, 63(3), 227-253.
Drasgow, F. (1984). Scrutinizing psychological tests: Measurement equivalence and equivalent relations with external variables are the central issues. Psychological Bulletin, 95, 34-135.
Eid, M., & Zickar, M. J.(2007). Detecting response styles and faking in personality and organizational assessments by mixed Rasch models. In M. von Davier, & C. H. Carstensen(Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications(pp. 255-270). New York, NY: Springer.
Embretson, S.(2007). Mixed Rasch models for measurement in cognitive psychology. In M. von Davier, & C. H. Carstensen(Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications(pp. 235-253). New York, NY: Springer.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299.
Finch, W. H., & Finch, M. E. H.(2013). Investigation of specific learning disability and testing accommodations based differential item functioning using a multilevel multidimensional mixture item response theory model. Educational and Psychological Measurement, 73(6), 973–993.
Henson, J. M., Reise, S. P., & Kim, K. H.(2007). Detecting mixtures from structural model differences using latent variable mixture modeling: a comparison of relative model fit statistics. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 202-226.
Holland, W. P., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp.129-145). Hillsdale, NJ: Erlbaum.
Huang, H.-Y.(2017). Mixture IRT model with a higher-order structure for latent traits. Educational and Psychological Measurement, 77(2), 275-304.
Jedidi, K., Jagpal, H. S., & DeSarbo, W. S.(1997). Finite-Mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science,16(1), 39-59.
Kam,C. C. S., & Fan, X.(2018). Investigating response heterogeneity in the context of positively and negatively worded items by using factor mixture modeling. Organizational Research Methods, 1-20.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.
Li, F., Cohen, A. S., Kim, S.-H., & Cho, S.-J.(2009). Model selection methods for mixture dichotomous IRT models. Applied Psychological Measurement, 33(5), 353-373.
Litson, K., Geiser, C., Burns, G. L., Servera, M.(2017). Examining trait×method interactions using mixture distribution multitrait–multimethod models. Structural Equation Modeling: A Multidisciplinary Journal, 24 (1), 31-51.
Lo, Y., Mendell, N., & Rubin, D. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.
Lord, F. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lubke, G. H. & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21-39
Lubke, G. & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14(1), 26–47.
McDonald, S. R.(2013). Identification of latent classes in mixture models: A Monte Carlo Simulation Study. Unpublished doctoral dissertation University of California, Riverside.
Magidson, J., & Vermunt, J. K. (2002). Latent class models for Clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20, 37-44.
McKinley, R. L. & Reckase, M. D. (1983). MAXLOG: A computer program for the estimation of the parameters of a multidimensional logistic model., Behavior Research Methods and Instrumentation, 15, 389-390.
McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley & Sons.
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance.Psychometrika, 58(4), 525-543
Mislevy, R. J., & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195-215.
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132.
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585.
Muthén, B., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Retrieved May 20, 2019, from: https://www.statmodel.com/download/Article_011.pdf
Muthén, B. & Asparouhov, T. (2006). Item response mixture modeling: Application to tobacco dependence criteria. Addictive Behaviors,31, 1050-1066.
Muthén, L. K., & Muthén, B. O. (1998-2015). Mplus User’s Guide(7th ed). Los Angeles, CA: Muthén & Muthén.
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55(2), 463-469.
Muthén, B. (2008). Latent variable hybrids: Overview of old and new models. In Hancock, G. R., & Samuelsen, K. M. (Eds.), Advances in latent variable mixture models (pp. 1-24). Charlotte, NC: Information Age Publishing, Inc.
Nylund, K. L., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569.
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271-282.
Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
Sclove, L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.
Thurstone, L. L. (1947). Multiple factor analysis: A development and expansion of vectors of the mind. University of Chicago Press, Chicago.
Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars, & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge: Cambridge University Press.
von Davier, M.,Rost J., & Carstensen, C. H.(2007). Introduction: Extending the Rasch model. In M. von Davier, & C. H. Carstensen(Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications(pp. 1-12). New York, NY: Springer.
von davier, M, & Yamamoto, K.(2007). Mixture-distribution and HYBRID Rasch models. In M. von Davier, & C. H. Carstensen(Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications(pp. 99-115). New York, NY: Springer.
Yang, C. C. (2006). Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics and Data Analysis, 50(4), 1090-1104.
Yung, Y. (1997). Finite mixtures in confirmatory factor analysis models. Psychometrika, 62(3), 297-330.