研究生: |
廖俊瑋 Chun-Wei Liao |
---|---|
論文名稱: |
景美溪集水區流量及雨量頻率分析 The Frequency Analysis of Runoff and Rainfall in The Chingmei Stream Watershed |
指導教授: |
廖學誠
Liaw, Shyue-Cherng |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 景美溪 、頻率分析 、極端水文事件 、流量變動 |
英文關鍵詞: | Chingmei Stream, Frequency Analysis, Extreme Hydrological Event, Variations of discharge |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頻率分析常被應用於防災規劃、水工設計及災害風險評估中,透過適當的機率分佈可推估最大降雨量或洪峰流量,有助於人們瞭解集水區內的水文特性,提升集水區經營管理之效率。本研究以景美溪集水區作為案例,從1970年至2009年間,針對降雨與逕流,透過年最大日事件、豐、枯季節量與全年總量,比較極端值第一型分佈、對數常態分佈、皮爾森第三型分佈及對數皮爾森第三型分佈之適切性,並據此探討近期氣候變遷之趨勢。結果顯示,研究區內年最大日流量頻率分析以極端值第一型分佈最為適切,後期(1987-2009年)的年最大日流量推估值均比前期(1970-1987年)高出許多,變動率介於9.45%至54.59%間,後期的年最大日流量平均值也比前期高出17.77%,變異係數更高出32.45%。後期的年一日最大雨量推估值均比前期高,變動率介於12.87%至56.34%間,後期的年一日最大雨量平均值比前期高出16.74%,變異係數則高出65.19%。在季節變動部份,枯水期流量及雨量下降,導致豐、枯季間差距亦更趨明顯。豐水期流量推估值較前期增加,變動率介於9.12%至12.62%間,後期豐水期流量平均值上升8.34%,變異係數高出35.50%。枯水期流量推估下降,變動率介於8.55%至14.01%,平均值減少13.42%,變異係數增加10.52%。流量不僅在年最大事件中出現增強的趨勢,豐、枯水期差距亦有趨於極端之現象。整體而言,景美溪集水區的年最大日流量及年一日最大雨量均逐漸增高,變動率大,頻度亦增強,顯示出未來的極端水文事件將具有上升之趨勢。
景美溪為台北都會區外圍重要河川,隨著都市的擴張,都市聚落多沿著河谷地向上游擴張,多使用河道兩側土地與山坡地。在全球氣候變遷下,台灣氣候型態受到明顯轉變,地表逕流亦受到相當程度的影響,因此,防洪減災成為景美溪流域經營的重要目標才能因應氣候變遷下流量及雨量特性的轉變。
The frequency analysis is often applied in disaster prevention planning, hydraulic works design, and hazard risk analysis. It is possible to estimate the maximum volume of intensive rainfall and peak discharge based on a suitable probability distribution. The frequency analysis is also helpful for people to understand the hydrological characteristics in a watershed, and to enhance the efficiency of watershed management. The Chingmei stream watershed is selected as a study area in this research. The extreme hydrological events are analyzed, including the annual maximum daily discharge and annual one-day maximum rainfall during the period from 1970 to 2009. Four probability distributions are compared, including extreme-value type I distribution, logarithmic normal distribution, Pearson type III distribution, and logarithmic Pearson type III distribution. The estimated annual maximum daily discharge in late stage (1987-2009) is higher than that in early stage (1970-1986). Their variation is from 9.45% to 54.59%. The average of annual maximum daily discharges in late stage is bigger surpassing up to 17.77%, and the standard deviation is also increasing up to 32.45%. The estimated one-day maximum rainfall in late stage is higher than that in early stage. Their variation is from 12.87% up to 56.34%. The average of one-day maximum rainfall in late stage is bigger surpassing up to 16.74%, and the standard deviation is also exceeding up to 65.19%.The other is that the amounts of runoff and rainfall become larger during the wet season and lower during the dry seasons. Discharge in the wet season variation is from 9.12% to 12.62%. The average of wet season discharge in late stage is bigger surpassing up to 8.34%, and the standard deviation is also increasing up to 35.50%. Besides, the discharge variation is from -8.55% to -14.01% in dry season. The average of discharge in the dry season in late stage decreases to 13.42%, and the standard deviation is also up to 10.52%.These results present that extreme events increase interannually, including floods and drought. In conclusion, there is an increasing trend for the annual maximum daily discharge and annual one-day maximum rainfall in the Chingmei stream watershed. The variation is enhancing and the frequency is strengthening. It reveals that the occurrence probability of extreme hydrological events is rising in the further.
The Chingmei stream is an important river in the suburbs of Taipei city. As the settlement extended along the valley, flood plains were occupied and communities were close to channel. Weather pattern and surface runoff in Taiwan have been considerably affected by the change of global climate. Therefore, the integrated watershed management should focus on land-use planning in Changed steam watershed. This will help us response to the change of runoff and rainfall characteristics in change stream.
壹、中文文獻
王如意、易任 (1992) 應用水文學新編下冊,台北:茂昌圖書有限公司。
王婕妤 (2012) 臺灣地區區域降雨總量及極端降雨與乾旱之變遷特性,國立中央大學土木工程學系碩士論文。
內政部戶政司 (2009)。臺閩地區人口統計要覽,內政部戶政司出版。
李光敦 (2002) 水文學,台北:五南出版公司。
沈少文 (2010) 1970-2008年花蓮地區河川流量與輸砂量之頻率分析,水保技術,5(3):152-166。
沈少文 (2011) 臺灣南部地區歷年年一日、年二日和年三日最大雨量之迴歸分析,作物、環境與生物資訊,8(2):139-152。
吳宜昭、陳永明、朱容練 (2010) 台灣氣候變遷趨勢,國研科技,25:40-46。
吳政霖 (2009) 大甲溪上游集水區雨量與河川流量變動情勢之研究,國立彰化師範大學地理學系碩士論文。
吳瑞賢、石棟鑫 (2003) 台灣地區極端降雨量分佈與頻率分析之研究-兼論納莉颱風事件,中國土木水利工程學刊,15(4):747-758。
林俊成、李國忠 (2000) 全球溫暖化對畢祿溪試驗集水區河川流量衝擊評估,台灣林業科學,15(1):51-60。
徐義人 (1995) 應用水文學,台北:大中國圖書公司。
郭純伶、李仲卿、謝孟益 (2010) 由凡那比颱風短降雨延時極端水文事件對都市排洪能力衝擊之初探,水利,20:3-9。
陳文福、黃家慶、邱滄明 (2010) 地理統計方法應用於暴雨頻率分析之研究,水保技術,5(2):95-104。
陳儒賢、陳清田、洪毓婷 (2010) 台灣地區年最大一日雨量區域頻率分析之研究:(I)理論部份,中華水土保持學報,41(1):41-50。
陳儒賢、陳清田、謝宛吟 (2011) 台灣地區區域洪水頻率分析之研究,農業工程學報,59(1):37-52。
許中立、鍾斌全、戴欣怡 (2007) 太麻里溪集水區降雨崩塌對河道淤沙之影響,坡地防災學報,7(1):1-21。
曹舜評、李汴軍 (2013) 大崙山區降雨頻率分析之研究,森林集水區經營研討會論文集,27-39頁。
楊萬全(1974) 新店溪沿岸地下水補注區之調查研究,台灣水利,22(4):20-38
鄧天德(1988) 景美溪流域之地形水文特徵,台北市立師範學院學報,19:33-76。
童慶斌、楊奕岑 (2004) 氣候變遷對台灣水文環境之衝擊,全球變遷通訊雜誌,44:1-8。
經濟部水利署 (2003) 景美溪治理規劃檢討,經濟部水利署河川規劃課。
經濟部水利署 (2006) 水文年報,經濟部水利署出版。
經濟部水利署 (2009) 水文年報,經濟部水利署出版。
經濟部水利署 (2011) 水文年報,經濟部水利署出版。
鄭皆達、蘇瑞榮、黎承偉 (1995) 臺灣地區洪峰流量特性及頻率分析之區域性研究,中華水土保持學報,26(3):211-220。
鄭皆達、黎承偉、吳輝龍 (1996) ,台灣河川溪流上游集水區不同重現期洪峰流量推估方法之推導及應用,第八屆水利工程研討會論文集,655-664頁。
盧孟明、陳佳正 (2005) 豪大雨之頻率分析方法,氣象學報,46(1):45-60。
蕭政宗、黃亮芸 (2007) 利用區域化法推估台灣地區未設站地點年最大一日雨量之頻率,農業工程學報,53(2):77-94。
蕭政宗、張雅閔 (2008) 台灣地區不同延時低流量最佳分佈之探討,農業工程學報,54(2):35-51。
鍾文祥、蔡文豪、龔誠山 (2010) 水利建設因應全球氣候變遷白皮書,經濟部水利署。
謝龍生、柳文成、童慶斌 (2004),未來氣候變遷趨勢對台灣流域防洪系統整體性潛在衝擊影響及其調適策略之研究,聯合學報,24:1-34。
謝錦志 (2010) 曾文水庫上游集水區及莫拉克事件之降雨分析,水利,20:221-235。
羅俊雄、陳亮全、許銘熙、謝龍生 (2002) 納莉颱風災因分析及綜合評估檢討報告,防災國家型科技計畫辦公室,NAPHM90-17。
羅偉佑 (2003) 臺灣北部地區集水區洪峰流量特性及其頻率分析之探討,國立成功大學水利及海洋工程研究所碩士論文。
蘇俊明 (2010) 石門水庫降雨變遷對水資源調度之影響,水利,20:49-54。
貳、外文文獻
Bi, H. , Liu,B., Wu, J., Yun, L., Chen, Z., and Cui, Z.(2009):Effects of precipitation and landuse on runoff during the past 50 years in a typical watershed in Loess Plateau, China. International Journal of Sediment Research , 24(3):352-364.
Cheng, K. S., J. L. Chiang and C. W. Hsu (2007) Simulation of probability distributions commonly used in hydrological frequency analysis. Hydrological Processes 21: 51-60.
Dunne, T., &Leopold, L.B.(1978):Water in Environmental Planning.N. Y.:W. H. Freeman and Company.pp272-277.
Ellouze, M. and H. Abida (2008) Regional flood frequency analysis in Tunisia: identification of regional distributions. Water Resource Management 22:943-957.
Fraile, R., C. Berthet, J. Dessens and J. L. Sánchez (2003) Return periods of severe hailfalls computed from hailpad data. Atmospheric Research 67-68: 189-202.
Fredrick, K. D. & Major, D. C. (1997):Climate change and water resources. Climatic Change, 37:7-23.
Griffis, V. W. and J. R. Stedinger (2009) Log-Pearson Type 3 distribution and its application in flood frequency analysis Ⅲ: sample skew and weighted skew estimators. Journal of Hydrological Engineering 14(2): 121-130.
Ishihara, K. (2010) Assessment for the 30-year daily precipitation change due to global warming using regional frequency analysis. Hydrological Research Letters 4: 30-34.
Izinyon, O. C., N. Ihimekpen and G. E. Igbinoba (2011) Flood frequency analysis of Ikpoba River catchment at Benin City using Log Pearson Type Ⅲ distribution. Journal of Emerging Trends in Engineering and Applied Sciences 2(1): 50-55.
Jou, P. H., A. M. Akhoond-Ali, A. Behnia and R. Chinipardaz (2008) Parametric and nonparametric frequency analysis of monthly precipitation in Iran. Journal of Applied Science 8(18): 3242-3248.
Kidson, R. and K. S. Richards (2005) Flood frequency analysis: assumptions and alternatives. Progress in Physical Geography 29(3): 392-410.
Kidson, R., K. S. Richards and P. A. Carling (2005) Reconstructing the ca. 100-year flood in Northern Thailand. Geomorphology 70: 279-295.
Leclerc, M. and T. B. M. J. Ouarda (2007) Non-stationary regional flood frequency analysis at ungauged sites. Journal of Hydrology 343: 254-265.
Leonard, M., A. Metcalfe and M. Lambert (2008) Frequency analysis of rainfall and streamflow extremes accounting for seasonal and climatic partitions. Journal of Hydrology 348: 135-147.
Loukas, A. (2002) Flood frequency estimation by a derived distribution procedure. Journal of Hydrology 255: 69-89.
Muzik, I. (2002): A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall–runoff model. Journal of Hydrology, 267:65-73.
Núñez, J. H., K. Verbist, J. R. Wallis, M. G. Schaefer, L. Morales and W. M. Cornelis (2011) Regional frequency analysis for mapping drought events in north-central Chile. Journal of Hydrology 405: 352-366.
Opere, A. O., S. Mkhandi and P. Willems (2006) At site flood frequency analysis for the Nile Equatorial basins. Physics and Chemistry of the Earth 31: 919-927.
Santos, J. F., M. M. Portela and I. Pulido-Calvo (2011) Regional frequency analysis of droughts in Portugal. Water Resource Management 25: 3537-3558.
Satyanarayana, P. and V. V. Srinivas (2008) Regional frequency analysis of precipitation using large-scale atmospheric variables. Journal of Geophysical Research 113, D24110, 16p, doi:10.1029/2008JD010412.
Singh, V. P., S. X. Wang and L. Zhang (2005) Frequency analysis of nonidentically distributed hydrologic flood data. Journal of Hydrology 307: 175-195.
Sveinsson, O. G. B., J. D. Salas and D. C. Boes (2002) Regional frequency analysis of extreme precipitation in Northeastern Colorado and Fort Collins flood of 1997. Journal of Hydrologic Engineering 7(1): 49-63.
Um, M. J., H. Yun, W. Cho and J. H. Heo (2010) Analysis of orographic precipitation on Jeju-Island using regional frequency analysis and regression. Water Resource Management 24: 1461-1487.
Villarini, G., J. A. Smith, F. Serinaldi, J. Bales, P. D. Bates and W. F. Krajewski (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources 32: 1255-1266.