簡易檢索 / 詳目顯示

研究生: 莊清文
Chuang, Ching-Wen
論文名稱: 鑭鎳氧薄膜的生長與釔鋇銅氧/鑭鎳氧雙層膜的超導特性之研究
Growth of LaNiO3 thin films and superconducting properties of YBa2Cu3O7-x/LaNiO3 bilayers
指導教授: 廖書賢
Liao, Shu-Hsien
王立民
Wang, Li-Min
口試委員: 廖書賢
Liao, Shu-Hsien
王立民
Wang, Li-Min
尤孝雯
Yu, Hsiao-Wen
陳昭翰
Chen, Jau-Han
口試日期: 2024/07/30
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 高溫超導體拓樸材料鎳酸鑭釔鋇銅氧磁控濺鍍
英文關鍵詞: High-temperature superconductor, Topological materials, Lanthanum nickelate, Yttrium barium copper oxide, Magnetron sputtering
研究方法: 實驗設計法主題分析比較研究
DOI URL: http://doi.org/10.6345/NTNU202401734
論文種類: 學術論文
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳酸鑭LaNiO3(LNO)是稀土鎳酸鹽系RNiO3(R代表溪土元素)材料中較受歡迎的材料,主要原因是它在低溫的時候不具有金屬-絕緣轉變(Metal–insulator transition, MIT),在低溫時依然保有金屬性質,成為RNiO3家族的一個特例。而近年來,又有研究指出,LNO在特定條件下,可能具有拓樸性質,更提升了它的研究熱度。加上近期的拓樸超導體的相關研究也日益升高,且晶格常數與YBa2Cu3O7-x(YBCO)相近,於是我們利用磁控濺鍍的方式,將兩種材料結合,生成雙層薄膜,並量測磁性與電性,探討是否有新發現。
    本研究首先討論LNO薄膜的生長條件,針對基板與生長溫度作探討,發現其在不同基板上生長出來的晶格常數會有所變化,而MgO基板則因為匹配度的問題無法成功生長,而580 ℃到720 ℃之間電阻率與晶格常數雖然有變化,但其影響幾乎可以忽略。
    由於前述原因,於是雙層薄膜我們以YBCO的最佳生長條件為依據,生長溫度定為720 ℃,並使用SrTiO3(STO)基板與LaAlO3(LAO)基板作探討。將LNO固定為20 nm,分別生長100 nm與50 nm雙層膜,其中我們發現雙層薄膜的超導臨界溫度皆低於YBCO,分別為79.1 K、65 K(磁性量測部分),遠低於YBCO的85.8 K左右,而我們推斷原因為LNO晶格結構造成YBCO b軸上的氧缺失,並利用XRD證明其推測。而從磁性量測我們得到了雙層薄膜LNO/YBCO 20/100 nm與20/50 nm 的Hc1分別為4.15 Oe與3.03 Oe,Hc2為3.66 T 與1.85 T,我們還發現Jc會隨著LNO占比下降,其中LNO/YBCO 為20/50 nm的樣品,在H=0的時候,Jc有被抑制的現象產生,推斷可能與LNO反應有關。並從Fp來推斷其可能為二維釘扎形式。
    而從電性量測發現,LNO/YBCO 20/100 nm時的Tc明顯比磁性量測還低,降低了約13 K左右,判斷可能與蝕刻的影響有關,而從U- H圖可以看出他們具有二維性質。

    Lanthanum Nickelate (LaNiO₃, LNO) is one of the more prominent materials in the rare-earth nickelate series (RNiO₃), primarily because it does not exhibit a metal-insulator transition (MIT) at low temperatures. Unlike other members of the RNiO₃ family, LNO retains its metallic properties even at low temperatures, making it a unique exception within this group. Recent studies have further highlighted LNO's potential topological properties under specific conditions, thereby increasing its research interest. Additionally, with the growing interest in topological superconductors and given that LNO's lattice constant is similar to that of YBCO, we employed magnetron sputtering to combine these two materials, creating a bilayer thin film. We then measured its magnetic and electrical properties to investigate the possibility of new discoveries.
    This study first examines the growth conditions of LNO thin films, focusing on the substrate and growth temperature. It was found that the lattice constant of the films varies depending on the substrate used. Specifically, the MgO substrate was unable to support successful growth due to a mismatch issue. While there were observable changes in both resistivity and lattice constant within the temperature range of 580°C to 720°C, the impact of these changes is considered negligible.
    Based on the aforementioned considerations, the growth conditions for the bilayer thin films were determined using the optimal growth conditions for YBCO, with the growth temperature set at 720°C. STO and LAO substrates were used for further investigation. The LNO layer was fixed at 20 nm, and bilayer films of 100 nm and 50 nm thicknesses were grown. It was observed that the superconducting critical temperatures of the bilayer films were lower than that of YBCO, specifically 79.1 K and 65 K (from magnetic measurements), which are significantly lower than the typical 85.8 K for YBCO. We hypothesize that this reduction is due to oxygen deficiency along the b-axis of YBCO induced by the LNO lattice structure, a hypothesis supported by XRD analysis.
    Magnetic measurements of the bilayer films LNO/YBCO 20/100 nm and 20/50 nm revealed Hc1 values of 4.15 Oe and 3.03 Oe, and Hc2 values of 3.66 T and 1.85 T, respectively. Additionally, we found that the critical current density (Jc) decreases as the proportion of LNO decreases. Specifically, the LNO/YBCO 20/50 nm sample exhibited suppressed Jc at H = 0, which we suspect is related to interactions with LNO. Analysis of the pinning force (Fp) suggests that a two-dimensional pinning mechanism may be at play.
    Electrical measurements revealed that the Tc of the LNO/YBCO 20/100 nm bilayer is significantly lower than that observed in magnetic measurements, with a reduction of approximately 13 K. This discrepancy is likely due to the effects of etching. Additionally, the U-H curve indicates that these bilayers exhibit two-dimensional characteristics.

    第一章 序論 1 1.1 拓樸超導體(topological superconductor, TSC) 1 1.2 鄰近效應(Proximity effect, PE) 1 1.3 釔鋇銅氧(YBa2Cu3O7-x, YBCO)簡介 2 1.4 鎳酸鑭(LaNiO3, LNO)簡介 3 1.5 研究動機 4 第二章 理論與背景 5 2.1 超導體發展歷史 5 2.2 超導體特性 6 2.2.1 零電阻(Zero Resistance)與臨界溫度(Critical Temperature, Tc) 6 2.2.2 邁斯納效應(Meissner effect)與超抗磁性(Superdiamagnetism) 7 2.2.3 倫敦穿透深度(London penetration depth) 8 2.2.4 第一類超導體(Type I Superconductor)和第二類超導體(Type II Superconductor) 9 2.2.5 二流體模型(Two-fluid model) 11 2.2.6 臨界電流密度(Jc)與臨界磁場(Hc) 11 2.2.7 磁冷(Field cooling, FC)與零磁冷(Zero field cooling, ZFC) 12 2.2.8 比恩模型(Bean’s Model,又稱臨界態模型Critical state model) 12 第三章 實驗方法 14 3.1 實驗流程 14 3.2 靶材製作 15 3.2.1 釔鋇銅氧(YBa2Cu3O7-x, YBCO)靶材製作 15 3.2.2 鎳酸鑭(LaNiO3, LNO)靶材製作 18 3.3 X光繞射分析儀(X-ray Diffractometer, XRD) 21 3.4 基板選擇以及清洗 22 3.5射頻磁控濺鍍系統 (RF magnetron sputtering system) 24 3.5.1 射頻磁控濺鍍系統 (RF magnetron sputtering system) 24 3.5.2 濺鍍原理 25 3.6 原子力顯微鏡(Atomic Force Microscope, AFM) 26 3.7 四點量測系統 27 3.8 SQUID 量測系統 28 3.8.1 MPMS3 28 3.8.2 MPMR2 29 第四章 實驗結果與討論 30 4.1 釔鋇銅氧(YBCO)薄膜與鎳酸鑭(LaNiO3)薄膜生長 30 4.1.1 釔鋇銅氧(YBCO)薄膜的生長條件與特性 30 4.1.2 鎳酸鑭(LNO)的生長條件:基板的選擇 32 4.1.3 鎳酸鑭(LNO)的生長條件:生長溫度選擇 34 4.2鎳酸鑭(LaNiO3)/釔鋇銅氧(YBCO)雙層薄膜生長 36 4.3 LNO/YBCO雙層薄膜與YBCO單層薄膜磁性量測結果 42 4.3.1 磁化強度(M)與溫度(T)關係 42 4.3.2 磁化強度(M)與外加磁場(H)關係 45 4.3.3 下&上臨界磁場(Hc1& Hc2)與溫度關係 47 4.3.4 相干長度(Coherence Lengh, ξ)與倫敦穿透深度(London Penetration Depth, λ) 51 4.3.5 磁滯曲線(Magnetic Hysteresis Loop) 54 4.3.6 臨界電流密度(Critical Current Density, Jc) 56 4.3.7 釘扎力(Pinning Force, Fp)與外加磁場(H)關係圖 62 4.4 LNO/YBCO雙層薄膜電性量測結果 65 4.4.1 電性量測樣品 65 4.4.2 電阻率(ρ)與溫度(T)關係 65 4.4.2 上臨界磁場Hc2(電性取法) 66 4.4.2 由ρ-T分析釘扎能(Pinning engrey) 68 第五章 結論 71 參考文獻 72

    [1] M M Sharma, Prince Sharma, N K Karn and V P S Awana, “Comprehensive review on topological superconducting materials and interfaces,” IOP Publishing, 2022.
    [2] 莊天明、陳鵬仁、關旭佑, “拓樸超導體”,物理雙月刊,2017,09,26
    [3] Lutchyn, Roman M., Jay D. Sau, and S. Das Sarma. "Majorana Fermions and a Topological Phase Transition<? format?> in Semiconductor-Superconductor Heterostructures." Physical review letters 105.7 (2010): 077001.
    [4] Stern, Ady, and Netanel H. Lindner. "Topological quantum computation—from basic concepts to first experiments." Science 339.6124 (2013): 1179-1184.
    [5] Hor, Yew San, et al. "Superconductivity in Cu x Bi 2 Se 3 and its Implications for Pairing<? format?> in the Undoped Topological Insulator." Physical review letters 104.5 (2010): 057001.
    [6] Guan, Syu-You, et al. "Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2." Science advances 2.11 (2016): e1600894.
    [7] Stilp, Evelyn, et al. "Controlling the near-surface superfluid density in underdoped YBa2Cu3O6+ x by photo-illumination." Scientific reports 4.1 (2014): 6250.
    [8] Cappelli, Edoardo, et al. "A laser-ARPES study of LaNiO3 thin films grown by sputter deposition." APL Materials 8.5 (2020).
    [9] Zhang, X. D., et al. "Preparation of LaNiO3 thin films with very low room-temperature electrical resistivity by room temperature sputtering and high oxygen-pressure processing." Thin Solid Films 516.6 (2008): 919-924.
    [10] Masys, Šarūnas, and Valdas Jonauskas. "Elastic properties of rhombohedral, cubic, and monoclinic phases of LaNiO3 by first principles calculations." Computational Materials Science 108 (2015): 153-159.
    [11] Yang, Kai-Yu, et al. "Possible interaction-driven topological phases in (111) bilayers of LaNiO 3." Physical Review B—Condensed Matter and Materials Physics 84.20 (2011): 201104.
    [12] Wu, Chuanbao, et al. "An All Sol-Gel Process for the Heteroepitaxial Growth of YBa2Cu3O7− x/LaNiO3/YBa2Cu3O7− x Tri-layer." Coatings 7.5 (2017): 62.
    [13] Satyalakshmi, K. M., et al. "Epitaxial metallic LaNiO3 thin films grown by pulsed laser deposition." Applied physics letters 62.11 (1993): 1233-1235.
    [14] Sun, Guo-Zhu, et al. "Pulsed laser deposition of LaNiO3 and YBa2Cu3O7− δ/LaNiO3 on SrTiO3 buffered (100) MgO." Thin solid films 471.1-2 (2005): 248-251.
    [15] Onnes, Kamerlingh. "The resistance of pure mercury at helium temperatures." Commun. Phys. Lab. Univ. Leiden, b 120 (1911).
    [16] Meissner, Walther, and Robert Ochsenfeld. "Ein neuer effekt bei eintritt der supraleitfähigkeit." Naturwissenschaften 21.44 (1933): 787-788.
    [17] Bardeen, J., Cooper, L. N., & Schrieffer, J. R. Physical review, 108(5), 1175.1957.
    [18] Wu, Maw-Kuen, et al. "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure." Physical review letters 58.9 (1987): 908.
    [19] https://zh.wikipedia.org/zh-tw/%E8%B6%85%E5%B0%8E%E9%AB%94
    [20] Chen, Yuanqing, et al. "High-efficiency preparation of high-quality YBCO superconducting films using an ultralow-fluorine sol–gel method." Journal of Sol-Gel Science and Technology 74 (2015): 249-255.
    [21] https://www.sciencefacts.net/meissner-effect.html
    [22] London, Fritz, and Heinz London. "The electromagnetic equations of the supraconductor." Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 149.866 (1935): 71-88.
    [23] https://cmms.triumf.ca/theses/Sonier/PhD/node7.html
    [24] https://en.wikipedia.org/wiki/File:Magnetisation_and_superconductors.png
    [25] Gorter, C.J. and H. Casimir, “On supraconductivity I,” Physica, Volume 1, Issues 1–6, pp. 306-320, 1934.
    [26] Zhang, Baoqiang, et al. "Efficient fabrication of ultralight YBa2Cu3O7− x superconductors with programmable shape and structure." Advanced Functional Materials 31.22 (2021): 2100680.
    [27] Bean, Co Po. "Magnetization of hard superconductors." Physical review letters 8.6 (1962): 250.
    [28] Lee, Hsin-Yi, Tai-Bor Wu, and Jyh-Fu Lee. "Effect of sputtering-target composition on the texturization of LaNiO3 thin films on Si substrate." Japanese journal of applied physics 36.1R (1997): 301.
    [29] Bragg., W. H. and Bragg W. L., “The Reflection of X-rays by Crystals,” Proc. R. Soc. Lond. A, 88, 1913.
    [30] https://lippmaa.issp.u-tokyo.ac.jp/sto/
    [31] https://www.mtixtl.com/laalo3orn1x05mmwafer1sp.aspx
    [32] https://www.mtixtl.com/MG-a-101005S1.aspx
    [33] Jha, Alok K., Neeraj Khare, and R. Pinto. "Enhanced flux pinning in pulsed laser deposited Y Ba2Cu3O7− δ: BaTiO3 nanocomposite thin films." Solid state communications 151.20 (2011): 1447-1451.
    [34] Sánchez, F., et al. "High-quality epitaxial LaNiO3 thin films on SrTiO3 (100) and LaAlO3 (100)." Applied Physics A 71 (2000): 59-64.
    [35] Sønsteby, Henrik H., et al. "A foundation for complex oxide electronics-low temperature perovskite epitaxy." Nature communications 11.1 (2020): 2872.
    [36] Ye, Jinhua, and Keikichi Nakamura. "Relaxation of crystallographic defects in YBa2Cu3O7− δ thin films by heat treatment and its effects on Tc." Physica C: Superconductivity 254.1-2 (1995): 113-123.
    [37] Zhang, Chao C., et al. "Investigation of magnetic and non-magnetic mechanisms for the attenuation of superconductivity in manganite/cuprate multilayers." Ceramics International 49.14 (2023): 24442-24445.
    [38] YANG, Hong-Chang; WANG, L. M,Physical Review B, 59.13: 8956. 1999.
    [39] D. Dew-Hughes, Philosoph. Mag., vol. 30, pp. 293-305, 1974.
    [40] Shen, Dong, et al. "Two-dimensional superconductivity and magnetotransport from topological surface states in AuSn4 semimetal." Communications Materials 1.1 (2020): 56.
    [41] 林聖恩,"國立台灣大學理學院物理學研究所碩士論文,"2021。
    [42] R.D.Park.Superconductivity,vol.2,1969
    [43] Jaskaran Singh, Anooja Jayaraj, D. Srivastava, S. Gayen, A. Thamizhavel, and Yogesh Singh (2018) Possible multigap type-I superconductivity in the layered boride RuB2. Phys. Rev. B 97, 054506.
    [44] Öztürk, Ali, et al. "The effect of Dy doping on the magnetic behavior of YBCO superconductors." Journal of Superconductivity and Novel Magnetism 29 (2016): 1787-1791.
    [45] Gokhfeld, D. M., et al. "Magnetic Ion Substitution and Peak Effect in YBCO: the Strange Case of Y1–x Gd x Ba2Cu3O7–δ." Journal of Superconductivity and Novel Magnetism 35.10 (2022): 2679-2687.
    [46] Theuss, H., and H. Kronmüller. "Magnetic properties of Y1− xGdxBa2Cu3O7− δ polycrystals." Physica C: Superconductivity 242.1-2 (1995): 155-163.
    [47] ABDEL-HAFIEZ, M., et al. Physical Review B, 88.17: 174512.2013
    [48] D. Dew-Hughes, Philosoph. Mag., vol. 30, pp. 293-305, 1974.
    [49] BRÜCK, S.; ALBRECHT, J. Physical Review B, , 71.17: 174508.2005.
    [50] Welp, U., et al. "Magnetic measurements of the upper critical field of YBa 2 Cu 3 O 7− δ single crystals." Physical review letters 62.16 (1989): 1908.
    [51] Malik, Bilal A., Manzoor A. Malik, and K. Asokan. "Magneto transport study of YBCO: Ag composites." Current Applied Physics 16.10 (2016): 1270-1276.
    [52] 蔡佾倫,"國立臺灣師範大學科技與工程學院光電工程研究所研究所碩士論文,"2023。

    下載圖示
    QR CODE