簡易檢索 / 詳目顯示

研究生: 古浤志
Hung-Jhih Gu
論文名稱: 奈米流體之混合散熱系統實驗平台建立與性能評估
指導教授: 呂有豐
Lue, Yeou-Feng
洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 99
中文關鍵詞: 混合綠色能源散熱系統系統設計比例閥
英文關鍵詞: hybrid green power, heat dissipation system, system system, proportional valve
論文種類: 學術論文
相關次數: 點閱:140下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要設計一套混合散熱系統,利用比例閥控制兩邊流量,達到一組散熱系統同時可冷卻兩加熱源之目的,進而透過添加奈米碳管流體分析散熱效益評估。首先,建立一組混合散熱系統,系統元件(加熱水槽、水泵、熱交換器、比例閥及數位流量計)。本實驗使用兩加熱源總合為1kW、總流量分別為3、5及7L/min,利用比例閥電壓開度0.6-3V間進行閥門的變動,透過穩態實驗量測出適合兩加熱源之電壓開度及何種流量最適用混合散熱系統,最後選擇適合的開度及流量進行暫態實驗。再者,使用二階法配置出奈米碳管流體,並針對不同的溫度與濃度的熱傳導係數、密度、黏滯係數及比熱等基礎性質進行量測與分析,透過添加奈米碳管流體至混合散熱系統並與原流體-水進行散熱效益分析。各研究結果分別為:在遴選奈米碳管流體濃度實驗結果顯示0.125wt.%擁有最佳散熱效果;穩態實驗結果顯示不同的流量會使熱交換器熱交換量不同,而透過添加奈米碳管流體可提升10%的散熱量;在暫態實驗結果顯示奈米流體相較於水,擁有更佳的散熱效果,其散熱效益分別提升5~17%。本研究結果顯示使用奈米碳管流體運用在綠色動力的熱管理系統可有效縮減散熱器及水泵體積,對於電動車空間配置、續航力及省電之貢獻度將於未來進行驗證。

    This research mainly designs a hybrid heat dissipation system which uses a proportional valve to control coolant flow rates in two paths in order to cool dual power sources at the same time so that thermal efficiency of Carbon nanotubes/Water nanofluids (CNWNs) can be increased. First, an experimental platform is established for the assessment of the innovation. Mechanical elements (coolant, cooling system components) and electrical elements (actuators, sensors, data recorders, etc.) are included. This experimental employed two heating sources of total 1000W; the coolant flow rates are: 3, 5, and 7L/min.; the proportional-valve voltage is within 0.6-3V. Through steady state experimental results, we searched proper valve voltages and flow rates to keep two power sources at optimal operating temperatures. Then, we can further select best operations for the transient experiments. Second, we used two-step synthesis method for producing CNWNS. The experiments for thermal conductivity, density, viscosity, specific heat and heat dissapation performance at difference temperatures and concentrations were conducted for both bulk fluid (water) and CNWNS. Experimental results demonstrate that: (1)0.125wt.% CNWNS have optimal thermal efficiency; (2)for the steady-state experimental, different flow rates have difference heat exchange values and 10% efficiency was increased for CNWNS compared to water; (3)for the transient experiments, CNWNS have better thermal efficiency than water. The heat dissapation of CNWNS compared with water is increase for 5~17%.
    This research shows that using CNWNS can reduce the occupied volume of heat exchanger and pump of this green thermal management system.The contributions for space arrangement, traveling distance and energy reduction will be verified for Evs in the near future.

    目錄 ABSTRACT ................................................................................................................. II 目錄............................................................................................................................... V 表目錄........................................................................................................................ VII 圖目錄...................................................................................................................... VIII 第一章 緒論 ............................................................................................................... 1 1.1 前言 ..................................................................................................................... 1 1.2 研究動機 ............................................................................................................. 2 1.3 研究目的 ............................................................................................................. 4 1.4 研究方法 ............................................................................................................. 4 1.5 論文架構 ............................................................................................................. 6 1.6 文獻回顧 ............................................................................................................. 6 第二章 相關理論與分析 ......................................................................................... 15 2.1 奈米碳管 ........................................................................................................... 15 2.1.1 奈米材料 ................................................................................................. 15 2.1.2 奈米碳管的結構 ..................................................................................... 16 2.1.3 奈米碳管的特性 ..................................................................................... 18 2.2 奈米流體 ........................................................................................................... 21 2.2.1 奈米流體之製備 ..................................................................................... 21 2.2.2 粒徑與團聚 ............................................................................................. 22 2.2.3 懸浮與分散 ............................................................................................. 22 2.2.4 ZATA電位 ................................................................................................. 22 2.2.5 黏滯係數 ................................................................................................. 23 2.2.6 比熱 ......................................................................................................... 24 2.2.7 熱傳的形式 ............................................................................................. 25 2.3 熱交換器 ........................................................................................................... 27 2.4 規則庫與控制策略推導 ................................................................................... 30 2.5 控制器電路運作模式 ....................................................................................... 33 2.5 效率因子比 ....................................................................................................... 35 第三章 實驗裝置與方法 ......................................................................................... 37 3.1 奈米碳管流體製備及基本特性量測 ............................................................... 38 3.1.1 奈米粉末表觀檢測 ................................................................................. 38 3.1.2 實驗樣本製備 ......................................................................................... 39 3.1.3 ZETA電位量測實驗 ................................................................................. 41 vi 3.1.4 熱傳導係數量測實驗 ............................................................................. 43 3.1.5 密度量測實驗 ......................................................................................... 45 3.1.6 黏滯係數量測實驗 ................................................................................. 47 3.1.7 比熱量測實驗 ......................................................................................... 49 3.2 混合散熱系統性能實驗 ................................................................................... 51 3.2.1 混合散熱系統機電實驗平台建立 ......................................................... 51 3.2.2 基礎流體穩態實驗 ................................................................................. 52 3.2.3 基礎流體暫態實驗 ................................................................................. 55 3.3 混合散熱系統添加奈米碳管之性能實驗 ....................................................... 57 3.3.1 選定奈米碳管濃度實驗 ......................................................................... 57 3.3.2 CNWNFS穩態實驗 ................................................................................. 60 3.3.3 CNWNFS暫態實驗 ................................................................................. 62 3.4實驗不確定性分析............................................................................................ 64 第四章 實驗結果與討論 ......................................................................................... 66 4.1 奈米碳管材料性質檢測 ................................................................................... 66 4.1.1 奈米粉末表觀檢測結果 ......................................................................... 66 4.1.2 奈米粉末表觀形貌 ................................................................................. 67 4.2 奈米碳管基本特性量測 ................................................................................... 68 4.2.1 ZETA電位量測實驗結果 ......................................................................... 68 4.2.2 熱傳導係數量測實驗結果 ..................................................................... 68 4.2.3 密度量測實驗結果 ................................................................................. 69 4.3.4 黏滯係數量測實驗結果 ......................................................................... 70 4.2.5 比熱量測實驗結果 ................................................................................. 71 4.3 混合散熱系統性能實驗 ................................................................................... 73 4.3.1 基礎流體穩態實驗結果 ......................................................................... 73 4.3.2 基礎流體暫態實驗結果 ......................................................................... 75 4.4 混合散熱系統添加CNWNFS之性能實驗 ..................................................... 78 4.4.1 選定CNWNFS濃度實驗結果 ............................................................... 78 4.4.2 CNWNFS穩態實驗結果 ......................................................................... 79 4.4.3 CNWNFS暫態實驗結果 ......................................................................... 81 4.4.4基礎流體與CNWNFS實驗結果 ............................................................ 84 第五章 結果與建議 ................................................................................................. 88 5.1 結論 ................................................................................................................... 88 5.2 後續研究與建議 ............................................................................................... 89 參考文獻...................................................................................................................... 90 符號彙整...................................................................................................................... 97

    [1] 王崇人,奈米科技的早期發展歷史,國立中正大學化學系碩士論文,(2006)。
    [2] 成會明 編著,奈米碳管,台北:五南,(2004)。
    [3] J. Baker, New technology and possible advances in energy storage, Energy Policy 36 (2008) 4368-4373。
    [4] S. Um, C. Y. Wang, K. S. Chen, Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells, Journal of Electrochem. 12 (2000) 4485–4493。
    [5] B. Thoben, A. Siebke, Influence of different gas diffusion layers on the water management of the PEFC cathode, Journal of New Mater. Electrochem. Syst. 7 (2004) 13-20 。
    [6] P. Zhou, C. W. Wu, G. J. Ma, Contact resistance prediction and structure optimization of bipolar plates, Journal of Power Sources, 159 (2006) 1115-1122.
    [7] Y. A. Çengel, Heat Transfer: A Practical Approach, 2nd ed., McGraw Hill, New York, 2003。
    [8] G. H. Guvelioglu, H. G. Stenger, Flow rate and humidification effectc on a PEM fuel cell performance and operation, Journal of Power Sources, 163 (2007) 882-891。
    [9] M. S. Wu, K. H. Liu, Y. Y. Wang, C. C. Wan, Heat dissipation design for lithium-ion batteries, J. Power Sources 109 (2002) 160-166。
    [10] A. A. Pesaran, Battery thermal mangaement in EVs and HEVs: issues and solutions, Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, February 6-8, 2001。
    [11] X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences, 46 (2007) 1-19。
    [12] S. Kakaç, A. Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer, 52 (2009) 3187-3196。
    [13] C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Research Letters, 6 (2011) 229。
    [14] W.F Stoecker, J.W. Jones, Refrigeration and air conditioning, 2 ed., McGraw-Hill, 1982。
    [15] A. Sripakagorn, N., Limwuthugraijirat, Experimental assessment of fuel cell/supercapacitor hybrid system for scooters, Int. J. of Hydrogen Energy, 34 (2009) 6036-6044。
    [16] P. Thounthong, S. Raėl, B. Davat, Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications, J. of Power Sources, 193 (2009)376-385。
    [17] J. Bauman, M. Kazerani, A comparative study of fuel cell-battery, fuel cell-ultracapacitor, and fuel cell-battery-ultracapacitor vehicles, IEEE Trans. on Vehicular Technology, 57 (2008) 760-769。
    [18] G. Paganelli, Y. Guezennec, G. Rizzoni, Optimizing control strategy for hybrid fuel cell vehicle, SAE Technical Paper 2002-01-0102。
    [19] T. K. Chau, S. Y. Wong, Hybridization of energy sources in electric vehicles, Energy Conversion and Management, 42 (2001) 1059-1069。
    [20] J. Bauman, M. Kazerani, A comparative study of fuel cell-battery, fuel cell-ultracapacitor, and fuel cell-battery-ultracapacitor vehicles, IEEE Trans. on Vehicular Technology, 57 (2008). 760-769。
    [21] LJMJ. Blomen, N. M. Mugerwa, Fuel Cell Systems, New York, Plenum Press, 1993。
    [22] Y. Shan, Y. S. Choe, A high dynamic PEM fuel cell model with temperature effects, J. of Power Sources, 145(2005) 30-39。
    [23] Y. Chen, L. Song, J. W. Evans, Modeling studies on battery thermal behaviour, thermal runaway, thermal management, and energy efficiency, Institute of electrical and Electronics Engineers, pp. 1465-1470。
    [24] S. C. Chen, C. C. Wan, Y. Y. Wang, Thermal analysis of lithium-ion batteries, J. of Power Sources, 140 (2005) 111-124。
    [25] N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles, J. of Power Sources, 99 (2001) 70-77。
    [26] M. S. Wu, K. H. Liu, Y. Y. Wang, C. C. Wan, Heat dissipation design for lithium-ion batteries, 109 (2002) 160-166。
    [27] A. A. Pesaran, Battery thermal management in EVs and HEVs: issues and solutions, Advanced Automotive Battery Conf., Las Vegas, Nevada, USA, February 6-8, 2001。
    [28] A. Faghri, Z. Guo, Challenge and opportunities of thermal management issues related to fuel cell technology and modelling, Int. J. of Heat and Mass Transfer, 48 (2005) 3891-3920。
    [29] Y. Zhang, M. Ouyang, Q. Lu, J. Luo, X. Li, A model predicting performance of proton exchange membrane fuel cell stack thermal systems, Applied Thermal Eng., 24 (2004) 501-513。
    [30] P. Hu, G. Y. Cao, X. J. Zhu, M. Hu, Coolant circuit modeling and temperature fuzzy control of proton exchange membrane fuel cells, Int. J. of Hydrogen Energy, 35 (2010) 9110-9123。
    [31] N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles, J. of Power Sources, 99 (2001) 70-77。
    [32] S. C. Chen, C. C. Wan, Y. Y. Wang, Thermal analysis of lithium-ion batteries, J. of Power Sources, 140 (2005) 111-124。
    [33] N. Sato, Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles, J. of Power Sources, 99 (2001) 70-77。
    [34] X. M. Xu, R. He, Research on the heat dissipation performance of battery pack based on forced air cooling, J. of Power Sources, 240 (2013) 33-41。
    [35] Heesung Park, A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles, J. of Power Sources, 239 (2013) 30-36。
    [36] J. M. Mottard, C. Hannay, E. L. Winandy, Experimental study of the thermal behavior of a water cooled Ni–Cd battery, J. of Power Sources, 117 (2003) 212-222。
    [37] G. Zhang, S. G. Kandlikar, A critical review of cooling techniques in proton exchange membrane fuel cell stacks, International Journal of Hydrogen Energy 37 (2012) 2412-2429。
    [38] C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Res. Lett. 6 (2011) 229。
    [39] Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids, International Journal of Heat and Fluid Flow, 21 (2000) 58-64。
    [40] C. H. Li, G. P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics, 99 (2006) 084314。
    [41] C. H. Li, G. P. Peterson, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, Journal of Applied Physics, 101 (2007) 044312。
    [42] L. F. Chen, H. Q. Xie, Properties of carbon nanotube nanofluids stabilized by cationic Gemini surfacetant, Thermochimica Acta, 506 (2010) 62-66。
    [43] F. M. Su, X. E. Ma, Z. Lan, The effect of carbon nanotubes on the physical properties of a binary nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 42 (2011) 252-257。
    [44] J. Li, C. Kleinstreuer, Thermal performance of nanofluid flow in microchannels, International Journal of Heat Fluid Flow 29 (2008) 1221-1232。
    [45] Y.H. Hung, T.P. Teng, T.C. Teng, J.H. Chen, Assessment of heat dissipation performance for nanofluid, Appl. Therm. Eng. 32 (2012) 132-140。
    [46] 馮榮豐、陳錫添,奈米工程概論,台北:全華(2009)。
    [47] 張立德 編著,奈米材料,台北:五南(2002)。
    [48] 張安華 主編,實用奈米技術,台北:新文京(2005)。
    [49] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, Poulin, Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes, Sinence , 290 (2000) 1331-13334。
    [50] Ph. Avouris , T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Applied Surface Science 141 (1999) 201-209。
    [51] F. M. Su, X. E. Ma, Z. Lan, The effect of carbon nanotubes on the physical properties of a binary nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 42 (2011) 252-257。
    [52] 陳俊鴻,氧化鋁奈米流體應用於綠能動力系統散熱性能之研究,國立臺灣師範大學工業教育學系碩士論文,(2012)。
    [53] Y. Xuan, Q. Li, W. Hu, Aggregation Structure and Thermail Conductivity of Nanofluids, AIChE Journal, 49 (2003) 1038-1043 。
    [54] 謝華清,奚同庚,王錦昌,奈米流體介質導熱機理初探,物理學報,52(6),頁1444-1449,2003。
    [55] 高濂、孫靜、劉楊橋,奈米粉體的分散與改性,台北:五南,(2005)。
    [56] 顏志羽,以水系電泳沉積法製備奈米碳膜,大同大學材料工程學系碩士論文,2009。
    [57] G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Journal of Fluid Mechanics, 83 (1977) 97–117。
    [58] 楊文昌 譯,基礎流體力學,台北:五南(2000)。
    [59] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thomson , Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78 (2001) 718–720。
    [60] B. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11 (1998) 151-170。
    [61] Z.H. Liu, Q.Z. Zhu, Application of aqueous nanofluids in a horizontal mesh heat pipe, Energy Conversion and Management, 52 (2011) 292–300。
    [62] 謝曉星 編著,基本熱傳學,台北:東華書局,(1990)。
    [63] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous twocomponent systems, Industrial & Engineering Chemistry Fundamentals, 1, (1962) 82-191。
    [64] W. Yu, S. U. S. Choi, The role of interfacial layers in the enhance thermal conductivity of nanofluids: a renovated Maxwell model, Journal of Nanoparticle Research, 5 (2003) 167-171。
    [65] C. J. Ho, W. K. Liu, Y. S. Chang, C. C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Sciences, 49(8), (2010) 1345-1353。
    [66] Y. H. Hung, W. C. Chou, Chitosan for Suspension Performance and Viscosity of MWCNTs, International Journal of Chemical Engineering and Applications, 3 (2012) 343-346。
    [67] T. P. Teng, Y. H. Hung, T. C. Teng, J. H. Chen, Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow, Nanoscale Res Lett 6 (2011) 488.

    下載圖示
    QR CODE