簡易檢索 / 詳目顯示

研究生: 趙恩
Chao En
論文名稱: 運用縱貫性體檢資料做機器學習演算預測國軍代謝症候群
Using Longitudinal Medical Examination Data into Machine Learning Algorithms to Predict Metabolic Syndrome among Army
指導教授: 李思賢
Lee, Szu-Hsien
學位類別: 博士
Doctor
系所名稱: 健康促進與衛生教育學系
Department of Health Promotion and Health Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 機器學習深度學習代謝症候群縱貫性體檢資料國軍
英文關鍵詞: machine learning, deep learning, metabolic syndrome, longitudinal medical examination data, army
DOI URL: http://doi.org/10.6345/NTNU202100163
論文種類: 學術論文
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景及目的:在現行定期體檢及體能測驗要求下,國軍官兵代謝症候群情況嚴重嗎?在智慧醫療時代,採用機器學習演算法從國軍官兵服役期間歷次的健康檢查資料序列,預測未來代謝症候群發生機率。
    研究方法:選取100年5月至107年12月間,至三軍總醫院松山分院參加國軍年度體檢之20歲以上國軍官兵,連續8年參加體檢者共1,636人。運用羅吉斯回歸、決策樹、K-近鄰演算法、支持向量機及樸素貝葉斯等機器學習演算法,及運用深度學習演算法的簡單長短期記憶神經網路、堆疊長短期記憶神經網路、雙向長短期記憶神經網路進行預測。
    研究結果:研究對象100-107年代謝症候群比率自100年時15.5%,增加至107年時25.2%;利用過往7年體檢結果的雙向長短期記憶神經網路模型,在預測未來有無代謝症候群模型效能最佳,模型正確率為85.6%、精準率為72.0%、召回率為73.1%、F值為71.1%。
    研究結論:善用歷次健康檢查之大數據,就能據以推動精準公共衛生預防保健服務,例如將機器學習演算法置於體檢資訊系統,透過系統定期收集資料及不斷更新模型,未來於不同型式的體檢結果查詢時,能以多元方式提供醫師及國軍官兵作為促進健康生活型態的參考。

    Background and objectives:Under the current requirements of regular physical examinations and physical fitness tests, is the situation of metabolic syndrome among army serious? In the era of smart medical care, machine learning algorithms are used to predict the future occurrence of metabolic syndrome from the sequence of medical examination data of army during their service.
    Methods:Selected from May 2011 to December 2018, the Army over the age of 20 who participated in the Army’s annual physical examination at the Tri-Service General Hospital Songshan Branch, a total of 1,636 people participated in the physical examination for 8 consecutive years. Machine learning algorithms such as Logistic regression, decision tree, K-nearest neighbor algorithm, support vector machine, and naive Bayes, and deep learning algorithms such as Vanilla long short-term memory neural networks, Stacked long short-term memory neural networks, and Bidirectional long short-term memory neural network for prediction.
    Results:The 2011-2018 metabolic syndrome rate of the research subjects increased from 15.5% in 2011 to 25.2% in 2018; the bidirectional long short-term memory neural network model based on the physical examination results of the past 7 years is the best in predicting the future presence of metabolic syndrome. The model accuracy is 85.6%, precision is 72.0%, recall is 73.1%, and F-measure is 71.1%.
    Conclusions:Making good use of the big data of previous health examination data can be used to promote precision public health preventive health care services. For example, machine learning algorithms are placed in the physical examination information system, and the system regularly collects data and continuously updates the model. In the future, different types of physical examination results when inquiring, it can provide doctors and military officers and soldiers in multiple ways as a reference for promoting a healthy lifestyle.

    第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 6 第三節 研究問題及假設 8 第二章 文獻探討 9 第一節 代謝症候群 9 第二節 國軍代謝症候群研究 14 第三節 國外軍隊代謝症候群研究 21 第四節 應用機器學習演算法預測代謝症候群 23 第五節 應用機器學習演算法預測健康檢查結果 27 第六節 小結 29 第三章 研究方法 30 第一節 研究對象 30 第二節 體檢資料庫內容 31 第三節 資料分析策略 34 第四章 研究結果 37 第一節 研究對象基本資料與歷次體檢結果 38 第二節 代謝症候群及各危險因子盛行率 49 第三節 靜態與動態預測 69 第四節 比較不同體檢頻率預測代謝症候群模型效能 90 第五章 結論與建議 94 參考文獻 97

    Al-Qahtani, D. A., & Imtiaz, M. L. (2005). Prevalence of metabolic syndrome in Saudi adult soldiers. Saudi medical journal, 26(9), 1360-1366.
    Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., . . . SmithJr, S. C. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640-1645. doi:10.1161/circulationaha.109.192644
    Bauduceau, B., Baigts, F., Bordier, L., Burnat, P., Ceppa, F., Dumenil, V., . . . Paillasson, S. (2005). Epidemiology of the metabolic syndrome in 2045 French military personnel (EPIMIL study). Diabetes & Metabolism, 31(4), 353-359. doi:https://doi.org/10.1016/S1262-3636(07)70204-5
    Blacker, S. D., Horner, F. L., Brown, P. I., Linnane, D. M., Wilkinson, D. M., Wright, A., . . . Rayson, M. P. (2011). Health, fitness, and responses to military training of officer cadets in a Gulf Cooperation Council country. Military Medicine, 176(12), 1376-1381. doi:10.7205/milmed-d-11-00166
    Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth International Group.
    Ceppa, F., Merens, A., Burnat, P., Mayaudon, H., & Bauduceau, B. (2008). Military community: a privileged site for clinical research: Epidemiological Study of Metabolic Syndrome Risk Factors in the Military Environment. J Military medicine, 173(10), 960-967.
    Cleeman, J. I. (2001). Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 285(19), 2486-2497. doi:10.1001/jama.285.19.2486
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Costa, F. F. d., Montenegro, V. B., Lopes, T. J. A., & Costa, E. C. (2011). Combination of risk factors for metabolic syndrome in the military personnel of the Brazilian Navy. Arquivos brasileiros de cardiologia, 97(6), 485-492. doi:10.1590/s0066-782x2011005000113
    Eckel, R. H., Grundy, S. M., & Zimmet, P. Z. (2005). The metabolic syndrome. Lancet, 365(9468), 1415-1428. doi:10.1016/s0140-6736(05)66378-7
    Filho, R. T. B., & D’Oliveira, A. (2014). The Prevalence of Metabolic Syndrome Among Soldiers of the Military Police of Bahia State, Brazil. American Journal of Men’s Health, 8(4), 310-315. doi:10.1177/1557988313510928
    Herzog, C. M., Chao, S. Y., Eilerman, P. A., Luce, B. K., & Carnahan, D. H. (2015). Metabolic Syndrome in the Military Health System Based on Electronic Health Data, 2009–2012. Military Medicine, 180(1), 83-90. doi:10.7205/MILMED-D-14-00039 %J Military Medicine
    Ho, N. (2017). 三番戰未能取下一勝,柯潔:與 AlphaGo 間有著巨大的差距. Retrieved from https://technews.tw/2017/05/27/alphago-wins-third-game-against-ke-jie/
    Ho, T. K. (1995). Random decision forests. Paper presented at the Proceedings of 3rd international conference on document analysis and recognition.
    Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. doi:10.1162/neco.1997.9.8.1735
    Kalff, K. G., Maya-Pelzer, P., Andexer, A., & Deuber, H. J. (1999). Prevalence of the metabolic syndrome in military and civilian flying personnel. Aviat Space Environ Med, 70(12), 1223-1226.
    Karimi-Alavijeh, F., Jalili, S., & Sadeghi, M. (2016). Predicting metabolic syndrome using decision tree and support vector machine methods. ARYA Atheroscler, 12(3), 146-152.
    Khazale, N. S., & Haddad, F. (2007). Prevalence and Characteristics of Metabolic Syndrome in 111 Royal Jordanian Air Force Pilots. Aviat Space Environ Med, 78(10), 968-972. doi:10.3357/ASEM.2097.2007
    Kim, H.-G., Jang, G.-J., Choi, H.-J., Kim, M., Kim, Y.-W., & Choi, J. (2016). Medical examination data prediction using simple recurrent network and long short-term memory. Paper presented at the Proceedings of the Sixth International Conference on Emerging Databases: Technologies, Applications, and Theory.
    Kim, H.-G., Jang, G.-J., Choi, H.-J., Lim, M., & Choi, J. (2017). Medical examination data prediction with missing information imputation based on recurrent neural networks. 19(3), 202-220.
    Lee, J. H., Seo, D. H., Nam, M. J., Lee, G. H., Yang, D. H., Lee, M. J., . . . Hong, S. (2018). The Prevalence of Obesity and Metabolic Syndrome in the Korean Military Compared with the General Population. Journal of Korean medical science, 33(25), e172. http://europepmc.org/abstract/MED/29915523
    http://europepmc.org/articles/PMC6000597?pdf=render
    http://europepmc.org/articles/PMC6000597
    https://doi.org/10.3346/jkms.2018.33.e172 doi:10.3346/jkms.2018.33.e172
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    McGraw, L. K., Turner, B. S., Stotts, N. A., & Dracup, K. A. (2008). A review of cardiovascular risk factors in US military personnel. J Cardiovasc Nurs, 23(4), 338-344. doi:10.1097/01.JCN.0000317437.75081.e7
    Murguía-Romero, M., Jiménez-Flores, R., Méndez-Cruz, A. R., & Villalobos-Molina, R. (2013). Predicting Metabolic Syndrome with Neural Networks. Paper presented at the MICAI, Berlin, Heidelberg.
    Park, J., Mendoza, J. A., Carol, E., Hilmers, D. C., Liu, Y., & Nicklas, T. A. (2008). A comparison of the prevalence of the metabolic syndrome in the United States (US) and Korea in young adults aged 20 to 39 years. J Asia Pacific journal of clinical nutrition, 17(3), 471-482.
    Payab, M., Hasani-Ranjbar, S., Merati, Y., Esteghamati, A., Qorbani, M., Hematabadi, M., . . . Shirzad, N. (2017). The Prevalence of Metabolic Syndrome and Different Obesity Phenotype in Iranian Male Military Personnel. American journal of men's health, 11(2), 404-413. doi:10.1177/1557988316683120
    Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14), 1347-1358. doi:10.1056/NEJMra1814259
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
    Williams, A. G. (2005). Effects of basic training in the British Army on regular and reserve army personnel. The Journal of Strength & Conditioning Research, 19(2), 254-259. doi:10.1519/15704.1
    Williams, A. G., Rayson, M. P., & Jones, D. A. (1999). Effects of basic training on material handling ability and physical fitness of British Army recruits. Ergonomics, 42(8), 1114-1124. doi:10.1080/001401399185171
    Worachartcheewan, A., Shoombuatong, W., Pidetcha, P., Nopnithipat, W., Prachayasittikul, V., & Nantasenamat, C. (2015). Predicting Metabolic Syndrome Using the Random Forest Method. Scientific World Journal, 2015, 581501. doi:10.1155/2015/581501
    Zimmet, P., Alberti, K. G., & Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature, 414(6865), 782-787. doi:10.1038/414782a
    李孟函. (2010). 國軍特殊作業人員代謝症候群相關因子之探討. (碩士), 國防醫學院, 台北市. Retrieved from https://hdl.handle.net/11296/xz32u3
    李俊男. (2017). 國軍志願役人員BMI與代謝症候群關聯性探討. (碩士), 明道大學, 彰化縣. Retrieved from https://hdl.handle.net/11296/5pkv3k
    林怡君. (2010). 軍校大學生代謝症候群及其相關因素之探討:前驅研究. (碩士), 國防醫學院, 台北市. Retrieved from https://hdl.handle.net/11296/j5fac9
    林信宏. (2016). 北部某空軍基地人員代謝症候群高危險群相關因素之探討. (碩士), 元培醫事科技大學, 新竹市. Retrieved from https://hdl.handle.net/11296/6xb76q
    林香志. (2013). 陸軍空勤人員代謝症候群之回溯性世代追蹤研究. (碩士), 國防醫學院, 台北市. Retrieved from https://hdl.handle.net/11296/y5ph56
    楊士賢. (2004). 台灣地區尉校級軍官代謝症候群特徵之研究. (碩士), 國防醫學院, 台北市. Retrieved from https://hdl.handle.net/11296/uzp6gr
    衛生福利部國民健康署. (2007). 代謝症候群防治工作手冊. In. Retrieved from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1175
    衛生福利部國民健康署. (2016). 代謝症候群學習手冊. In. Retrieved from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1181
    衛生福利部國民健康署. (2017). 國民營養健康狀況變遷調查(102-105年)成果報告. Retrieved from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=3998

    無法下載圖示 本全文未授權公開
    QR CODE