研究生: |
黃國倫 Huang, Guo-Lun |
---|---|
論文名稱: |
極低寄生電容之靜電放電防護設計 ESD Protection Design with Ultra-Low Parasitic Capacitance |
指導教授: |
林群祐
Lin, Chun-Yu |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 靜電放電 、低雜訊放大器 、堆疊式二極體內嵌入式矽控整流器 、垂直式NPN |
英文關鍵詞: | Electrostatic discharge (ESD), low-noise amplifier (LNA), stacked diodes with embedded silicon-controlled rectifier (SDeSCR), vertical NPN (VNPN) |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DEE.002.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:194 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究主軸為極低寄生電容之全晶片靜電放電防護設計,採用0.18-μm之CMOS以及SiGe BiCMOS製程,並實際搭配所設計的靜電放電防護元件應用至不同頻段的低雜訊放大器。
在CMOS製程設計堆疊式二極體內嵌入式矽控整流器,該元件有小的佈局面積、低寄生電容、以及高耐受度。將堆疊式二極體內嵌入式矽控整流器應用至操作在24-GHz的低雜訊放大器,並驗證全晶片靜電放電防護設計。使用BiCMOS製程設計垂直式NPN元件,降低元件的觸發電壓,並將垂直式NPN元件加在2.4-GHz低雜訊放大器上模擬電路特性。
The main thesis of this dissertation is a whole-chip electrostatic discharge (ESD) protection design with ultra-low parasitic, and the ESD devices are applied to radio-frequency integrated circuit (RFIC). The ESD devices are attached to low-noise amplifier (LNA) at 2.4-GHz and 24-GHz in 0.18-μm SiGe BiCMOS and CMOS technologies, respectively.
The stacked diodes with embedded silicon-controlled rectifier (SDeSCR) is designed in 0.18-μm CMOS technology, which has advantages of small layout area, low parasitic capacitance, and strong ESD robustness. In addition, the SDeSCR devices are applied to the 24-GHz LNA, and the function of the LNA with SDeSCR devices is verified. The VNPN device is fabricated in 0.18-μm SiGe BiCMOS technology. The proposed design effectively reduces the trigger voltage of the VNPN device. The characteristics of 2.4-GHz LNA with VNPN devices are simulated.
[1] A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, John Wiley & Sons, 2002.
[2] M.-D. Ker, C.-Y. Lin, and Y.-W. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device and Materials Reliability, 2011.
[3] Q. Cui, J. Liou, J. Hajjar, J. Salcedo, Y. Zhou, and P. Srivatsan, On-Chip Electro-Static Discharge (ESD) Protection for Radio-Frequency Integrated Circuits, Springer, 2015.
[4] S. Voldman, ESD: Circuits and Devices, John Wiley & Sons, 2015.
[5] H. Chauhan and M. Onabajo, “Performance enhancement techniques and verification methods for radio frequency circuits and systems,” in Proc. IEEE VLSI Test Symp., 2016.
[6] S. Parthasarathy, R. Carrillo-Ramirez, J. Salcedo, and J. Hajjar, “Design of ESD protection for large signal swing RF inputs operating to 24GHz in 0.18m SiGe BiCMOS process,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2015.
[7] C.-Y. Lin, M.-D. Ker, and P.-H Chang, “Study on the ESD-induced gate-oxide breakdown and the protection solution in 28nm high-k metal-gate CMOS technology,” IEEE Nanotechnology Materials and Devices Conference, 2015.
[8] S.-L. Chen, M.-H. Lee, and T.-S. Wu, “Influences of substrate pickup integrated with the source-end engineering on ESD/latch-up reliabilities in a 0.35-m 3.3-V process,” in Proc. Int. Symp. Computer, Consumer and Control, 2016.
[9] D. Abessolo-Bidzo, T. Smedes, and P. Jong, “A study of the effect of remote CDM clamps in integrated circuits,” in Proc. IEEE Electrical Overstress/Electrostatic Discharge Symp., 2015.
[10] B.-W. Chang, H.-C. Hsu, and M.-D. Ker, “Automation of synchronous bias transmission line pulsing system,” in Proc. Int. Symp. VLSI Design, Automation and Test, 2007.
[11] T. Maloney, “Evaluating TLP transients and HBM waveforms,” in Proc. Electrical Overstress/Electrostatic Discharge Symp., 2009.
[12] JEDEC JESD22-A114F standard, “Electrostatic discharge (ESD) sensitivity testing human body model (HBM),” Dec. 2008.
[13] ANSI/ESDA/JEDEC JS-001-2010, 2010, ESDA/JEDEC Joint Standard, “For electrostatic discharge (ESD) sensitivity testing: human body model (HBM) - component level”
[14] Industry Council on ESD Target Levels, “White Paper 1: A case for lowering component level HBM/MM ESD specifications and requirements,” Sep. 2011.
[15] Industry Council on ESD Target Levels, “White Paper 2: A case for lowering component level CDM ESD specifications and requirements,” Apr. 2010.
[16] JEDEC JEP172, “Discontinuing Use of the Machine Model for Device ESD Qualification,” Sep. 2017.
[17] JEDEC JESD47, “Stress-Test-Driven Qualification of Integrated Circuits,” Jul. 2015.
[18] S. Goswami, H. Kim, and J. Dawson, “A frequency-agile RF frontend architecture for multi-band TDD applications,” IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2127-2140, Oct. 2014.
[19] S. Voldman, ESD: RF Technology and Circuits, John Wiley & Sons, 2006.
[20] C.-Y. Lin and M.-L. Fan, “Design of ESD protection diodes with embedded SCR for differential LNA in a 65-nm CMOS process,” IEEE Trans. Microwave Theory and Techniques, vol. 62, no. 11, pp. 2723-2732, Nov. 2014.
[21] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173–183, Jan. 1999.
[22] G. Chen, H. Feng, H. Xie, R. Zhan, Q. Wu, X. Guan, A. Wang, K. Takasuka, S. Tamura, Z. Wang, and C. Zhang, “Characterizing diodes for RF ESD protection,” IEEE Electron Device Letters, vol. 25, no. 5, pp. 323-325, May 2004.
[23] M.-D. Ker, T.-Y. Chen, and C.-Y. Chang “ESD protection design for CMOS RF integrated circuits,” in Proc. IEEE Electrical Overstress/Electrostatic Discharge Symp., 2001.
[24] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, Jun. 2005.
[25] J. Park, D. Kim, Y. Son, J. Ha, J. Song, C. Jang, and W. Jung, “Low-capacitance low-voltage triggered SCR ESD clamp using nMOS with asymmetric drain for RF ICs,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 360-367, Feb. 2011.
[26] R. Sun, Z. Wang, M. Klebanov, W. Liang, J. Liou, and D. Liu, “Silicon-controlled rectifier for electrostatic discharge protection solutions with minimal snapback and reduced overshoot voltage,” IEEE Electron Device Lett., vol. 36, no. 5, pp. 424-426, May 2015.
[27] C.-Y. Lin and M.-T. Lin, “Improved stacked-diode ESD protection in nanoscale CMOS technology,” IEICE Electronics Express, vol. 14, no. 13, pp. 20170570, Jul. 2017.
[28] C.-Y. Lin, M.-L. Fan, M.-D. Ker, L.-W. Chu, J.-C. Tseng, and M.-H. Song, “Improving ESD robustness of stacked diodes with embedded SCR for RF applications in 65-nm CMOS,” in Proc. Int. Reliability Physics Symp., 2014.
[29] F. A. Altolaguirre and M.-D. Ker, “Power-rail ESD clamp circuit with diode-string ESD detection to overcome the gate leakage current in a 40-nm CMOS process,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3500-3507, Oct. 2013.
[30] C. -T. Yeh, M.-D. Ker, and Y.-C. Liang, “Optimization on layout style of ESD protection diode for radio-frequency front-end and high-speed I/O interface circuits,” IEEE Trans. Device Mater. Rel., vol. 10, no. 2, pp. 238-246, Jun. 2010.
[31] T. Lim, P. Benech, J. Jimenez, J. Fournier, B. Heitz, J. Bourgeat, and P. Galy, “Generic electrostatic discharges protection solutions for RF and millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 11, pp. 3747-3759, Nov. 2015.
[32] S.-G. Lin, RF Measurement, Hsinchu, 2016. Available: https://www.cic.org.tw/main.jsp.
[33] X. Huang, J. Liou, Z. Liu, F. Liu, J. Liu, and H. Cheng, “A new high holding voltage dual-direction SCR with optimized segmented topology,” IEEE Electron Device Lett., vol. 37, no. 10, pp. 1311-1313, Oct. 2016.
[34] D. Ahn, K. Choi, K. Choi, and S.-M, Han, “A new de-embedding technique for arbitrary N-port networks using ideal 1:J transformers” in Proc. IEEE Int. Conf. Electrical Design of Advanced Packaging and Systems, 2016.
[35] X. S. Loo, K. W. J. Chew, K. S. Yeo, M. Z. Win, and C. C. Boon, “A hybrid pad-line-finger de-embedding technique for broadband modeling of CMOS transistor,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 507–509, Jul. 2016.
[36] B. Liu, J. Zhou, and J. Mao, “A fully integrated low voltage (0.5V) X-band CMOS low noise amplifier,” Microw. Opt. Technol. Lett., vol. 53, no. 1, pp. 17-20, Jan. 2011.
[37] J. Tsai, W. Huang, C. Lin, and R. Chang, “An X-band low-power CMOS low noise amplifier with transformer inter-stage matching networks,” in Proc. IEEE Eur. Microw. Conf., 2014.
[38] H. Wang, L. Zhang, L. Zhang, Y. Wang, and Z. Yu, “Design of 24-GHz High-Gain Receiver Front-End Utilizing ESD-Split Input Matching Network,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 482–486, Aug. 2011.
[39] H. Wang, C. Jiao, L. Zhang, D. Zeng, D. Yang, Y. Wang, Z. Yu, “A low-power ESD-protected 24GHz receiver front-end with π-type input matching network,” in Proc. Int. Symp. Circuits and Systems (ISCAS), pp. 2877–2880, 2011.
[40] X. Hong, Z. Du, and K. Gong, “Heat effect in a vertical grounded-base NPN bipolar junction transistor under ESD stress,” in Proc. IEEE Int. Conf. Microwave and Millimeter Wave Technology, 2007.
[41] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18m CMOS process,” in Proc. Electrical Overstress/Electrostatic Discharge Symp., pp. 251-259, 2000.
[42] M. Liu, J. Craninckx, N. Iyer, M. Kuijk, and A. Barel, “A 6.5-kV ESD-protected 3-5-GHz ultra-wideband BiCMOS low-noise amplifier using interstage gain roll-off compensation,” IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 4, pp. 1698-1706, Apr. 2006.
[43] D. Brandano, M. Delgado-Restituto, J. Ruiz-Amaya, and A. Rodriguez-Vazquez, “A 5.3mW, 2.4GHz ESD protected low-noise amplifier in a 0.13m RFCMOS technology,” in Proc. European Conf. Circuit Theory and Design, 2007.
[44] D. Ren, L. Sun, M. Zhou, and J. Liu, “A 2.4-GHz fully integrated ESD-protected low-noise amplifier in SMIC 40 nm CMOS technology,” in Proc. IEEE Int. Conf. Communication Technology, 2015.
[45] G. Chen, H. Feng, A. Wang and Y. Cheng, “Noise Analysis of ESD Structures and Impacts on a Fully-Integrated 5.5GHz LNA in 0.18μm SiGe BiCMOS,” in Proc. IEEE Int. European Conf. Wireless Symp., 2005.