研究生: |
陸孟勳 Lu, Meng-Hsun |
---|---|
論文名稱: |
脈衝式超音波激振式磁性感測技術之可行性探討 The Feasibility of Pulsed Ultrasound-Induced Magnetic Sensing Technology |
指導教授: |
謝振傑
Chieh, Jen-Jie |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 171 |
中文關鍵詞: | 聲波式振動樣品磁量儀 、超音波 、磁性感測 |
英文關鍵詞: | Sound-exciting vibrating sample magnetometer, Ultrasound, Magnetic sensing |
DOI URL: | http://doi.org/10.6345/NTNU201900990 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脈衝式超音波激振式磁性感測技術其架構建立於聲波式振動樣品磁量儀,圓形海爾貝克磁鐵陣列(circular Halbach array)作為主要磁場來源,利用音波管及聚焦式超音波管產生能量,使被極化的磁性材料在接收線圈中振盪,產生磁通量變化讓接收線圈產生電信號以達到造影技術之雛形。在磁場相同的情況下,先以振盪頻率20~20kHz之音波做為驗證基礎,進而使用振盪頻率為3MHz之超音波來看是否實驗結果會與音波之結果相符。脈衝式超音波激振式磁性感測技術之可行性探討其目標是未來在臨床上能以超音波結構性影像為基礎,結合磁性感測之功能性影像,同時看到器官或組織的結構及病灶的位置。
Pulsed ultrasound-induced magnetic sensing technology is based on sound-exciting vibrating sample magnetometer. Circular Halbach array as the main source of magnetic field. Using a sonic probe and a focused ultrasonic probe to generate energy, causing the polarized magnetic material to vibrate in the receiving coil, and the magnetic flux change causes the receiving coil to generate an electrical signal to achieve the prototype of the contrast technique. In the case of the same magnetic field, the acoustic wave with an oscillation frequency of 20 to 20 kHz is used as the basis for verification, and then the ultrasonic wave with an oscillation frequency of 3 MHz is used to see whether the experimental result matches the result of the sound wave. The Feasibility of Pulsed Ultrasound-Induced Magnetic Sensing Technology is aimed at the future clinically based on ultrasound structural images, combined with functional images of magnetic sensing, while seeing the structure of organs or tissues and location of the lesion.
[1] Zhongling Wang, Ruirui Qiao, Na Tang, Ziwei Lu, Han Wang, Zaixian Zhang, Xiangdong Xue, Zhongyi Huang, Siruo Zhang, Guixiang zhang and Yuanpei Li, "Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer," Biomaterials. Author manuscript, vol. 127, pp. 25–35, 2018.
[2] Igal Galili, Dov Kaplan and Yaron Lehavi, "Teaching Faraday’s law of electromagnetic induction in an introductory physics course, " Am. J. Phys, vol. 74, pp. 337-343, 2006.
[3] Yang Han, Gary Yi Hou, Shutao Wang and Elisa Konofagou, "High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)," Phys. Med. Biol., vol. 60, pp. 5911-5924, 2015.
[4] Martijn Hoogenboom, Dylan Eikelenboom, Marttijn H. DEN Brok, Arend Heerschap, Jurgen J. Futterer and Gosse J. Adema, "MECHANICAL HIGH-INTENSITY FOCUSED ULTRASOUND DESTRUCTION OF SOFT TISSUE: WORKING MECHANISMS AND PHYSIOLOGIC EFFECTS," Ultrasound in Med. & Biol., Vol. 41, No. 6, pp. 1500–1517, 2015.
[5] M. Colombel, and A. Gelet, "Principles and results of highintensity focused ultrasound for localized prostate cancer," Prostate Cancer and Prostatic Diseases, vol. 7, pp. 289–294, 2004.
[6] Jen-Jie Chieh, Kai-Wen Huang, Chih-KuangYeh, Shu-Hsien Liao, Yi-Yan Lee, Pei-Yi Hsiao, Wen-Chun Wei, Hong-Chang Yang and Herng-Er Horng, "Ultrasound-Induced Magnetic Imaging of Tumors Targeted by Biofunctional Magnetic Nanoparticles," ACS Nano, pp. 3030-3037, 2017.
[7] 鄭明良,電磁學,文笙書局股份有公司,臺北市,1990
[8] 陳永平,電磁學,全華圖書股份有限公司,臺北市,2008
[9] 周卓明,壓電力學,全華科技圖書股份有限公司,臺北市,2003
[10] 金柏仁,超聲工程,五洲出版社,臺北市,1967
[11] 鄭振東,超音波工程,全華科技圖書股份有限公司,臺北市,1999