簡易檢索 / 詳目顯示

研究生: 陳運達
Chen, Yun-Ta
論文名稱: 金屬與介電質層狀結構表面電漿波光學性質之研究
Optical properties of surface plasma wave in metal and dielectric layered structures
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 63
中文關鍵詞: 表面電漿波
英文關鍵詞: Surface plasma wave
論文種類: 學術論文
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要使用稜鏡耦合的方式來激發表面電漿波,分別用使用了Kretshmann結構以及雙層金屬結構,材料方面則選用了Ag、LiF、Au、ITO、InN等,藉以探討不同結構、金屬材料、厚度、入射光波長下,表面電漿的各種光學性質變化。
    第二章針對表面電漿的各種基本性質進行研究,包括表面電漿波及長程表面電漿波的激發、對稱結構的色散關係、Ag薄膜及LiF薄膜的改變對反射率、共振角位移、半高寬度等之影響。
    第三章使用雙層金屬薄膜結構( MgF2 / Ag / Au )和Kretshmann結構(Au),確認在能量損耗、反射率等方面,雙層金屬薄膜結構能夠提供較佳之表現,並改變Ag及 Au之厚度,探討其對反射率曲線造成之影響。
    第四、五章針對應用於紅外光區的InN及ITO材料,分別針對兩者靈敏度最佳的頻段,探討薄膜厚度的變化對於靈敏度的影響,並找出表現最佳之值。

    In this thesis, we use the Kretshmann structure and the bilayer metallic structure to excite the surface plasma waves (SPW), respectively. The materials used are Ag, LiF, Au, ITO, and InN. By changing the wavelength of the incident light, the thin film materials and their thicknesses, we can study the optical properties of the surface plasma wave.
    In Chapter 2, we first study the basic properties of the SPW, including the excitation of SPW, long-range SPW, and the dispersion relation of symmetric structure. The properties such as the resonance angle displacement and FWHM can be examined by the calculated reflectance.
    In Chapter 3, we make a comparison between bilayer metallic structure (MgF2 / Ag / Au) and the simple Kretshmann structure (Au). Considering the energy loss and reflectance, it is found that the bilayer metallic structure can provide better performance.
    In Chapter 4 and 5, we respectively chose InN and ITO to replace the metal and properties of SPW can be investigated in the regions of 1500nm -1800nm for ITO and 2500nm - 5500nm for InN. The sensitivity issues will be explored for these two materials.

    摘要 i Abstract ii 致謝 iii 目錄 iv 第一章 緒論 1-1 簡介 1 1-2 表面電漿波的應用 2 1-3 研究方向 3 第二章 表面電漿波基本性質探討 2-1 簡介 4 2-2 表面電漿波的激發 4 2-3 長程表面電漿波的激發 6 2-4 對稱結構表面電漿波的色散關係 8 2-5 金屬薄膜厚度的影響 10 2-6 結論 14 第三章 雙層金屬薄膜結構的表面電漿波 3-1 簡介 15 3-2 理論基礎 16 3-2.1 Drude model 16 3-2.2 轉移矩陣法 17 3-3 結果與討論 20 3-3.1 Kretshmann和M. Zekriti雙層金屬薄膜結構比較 20 3-3.2 金屬層厚度對反射率曲線之影響 22 3-3.3 靈敏度 30 3-4 結論 34 第四章 ITO薄膜的表面電漿波靈敏度探討 4-1 簡介 36 4-2 理論基礎 37 4-2.1 Sellmeier dispersion relation 37 4-2.2 Drude model 38 4-2.3 靈敏度之定義 38 4-2.4 轉移矩陣法 38 4-3 結果與討論 40 4-4 結論 44 第五章 InN薄膜的表面電漿波靈敏度探討 5-1 簡介 45 5-2 理論基礎 46 5-2.1 Sellmeier dispersion relation 46 5-2.2 Drude model 47 5-2.3 靈敏度之定義 47 5-2.4 轉移矩陣法 47 5-3 結果與討論 48 5-4 結論 58 第六章 結論 59 參考文獻 61

    [1] R. W. Wood, Philos. Mag. 4, 396, 1902.
    [2] U. Fano, J. Opt. Soc. Am. 31, 213, 1941.
    [3] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275, 1965.
    [4] P. B.Daniels,et al.Sensors and Actuators, 15:11-18,1988.
    [5] C. E. Berger, R. P. Kooyman, J. Greve. Rev. Sci Instrum., 65(9):2829-2836, 1994.
    [6] D.P. Tsai,W.C. Lin, Appl. Phys. Lett. 77, 1413, 2000; J. Tominoga, J. Kim, H. Fuji, D. Buchel, T.Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, Jpn. J. Appl. Phys. 40, 1831, 2001; W. C. Liu , C. Y. Wen, K. H. Chen, W.C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685, 2001.
    [7] O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, Solar Energy Materials and Solar Cells 37, 337, 1995; M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, Solar Energy Materials and Solar Cells 61, 97 , 2000 .
    [8] 金屬表面電漿簡介,邱國斌、蔡定平,物理雙月刊(廿八卷二期)2006 年4 月.
    [9] A. Otto. Z. Physik, 216: 398, 1968.
    [10] E. Kretschmann. Z. Physik, 248: 313, 1971.
    [11] 導波光學中的轉移矩陣方法,曹庄琪,上海交通大學出版社,ISBN:7-313-02440-1,2000年9月.
    [12] D. Sarid, Pys. Rev. Lett., 47 (26): 1927-1930, 1981.
    [13] R. T. Deck, D. Sarid. J. Opt. Soc. Am.,72(12): 1613-1617, 1982.
    [14] Surface Plasmons on smooth and rough surface and on gratings, Heinz Raether, Springer-Verlag Berlin Heidelberg, ISBN:3-540-17363-3, 1988.
    [15] S. A. Zynio, A. V. Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance”, Sensors 2, 62–70 , 2002.
    [16] D. V. Nesterenko, S. Rehman, and Z. Sekkat, “Surface plasmon sensing with different metals in single and double layer configurations”, Appl. Opt. 51, 6673–6682, 2012.
    [17] B. H. Ong, X. Yuan, S. C. Tjin, J. Zhang, and H. M. Ng,“Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor,” Sens. Actuators B 114, 1028–1034, 2006.
    [18] M. Zekriti, Dmitry V. Nesterenko, and Z. Sekkat, “Long-range surface plasmons supported by a bilayer metallic structure for sensing applications”, Applied Optics Vol. 54 No. 8, 2151-2157, 2015 .
    [19] S. Rehman, A. Rahmouni, T. Mahfoud, D. V. Nesterenko, and Z. Sekkat, “Determination of the optical thickness of sub 10-nm thin metal films by SPR experiments”, Plasmonics 9, 381–387, 2014.
    [20] Navneet K. Sharma, Swati Yadav, Vivek Sajal, “Theoretical analysis of highly sensitive prism based surface plasmon Resonance sensor with indium tin oxide”, OpticsCommunications , 2013.
    [21] S.K. Mishra, B.D. Gupta, Plasmon 7, 627, 2012.
    [22] C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, IEEE Sens. J. 10, 365, 2010.
    [23] R.K. Verma, B.D. Gupta, J. Opt. Soc. Am. A 27 , 846, 2010.
    [24] Mahima Rani, Sarika Shukla, Navneet K. Sharma, Vivek Sajal, ”Theoretical analysis of surface plasmon resonance based fiber opticsensor using indium nitride”, Optik 125 6026–6031, 2014.
    [25] J.S. Thakur, G.W. Auner, D.B. Haddad, R. Naik, V.M. Naik, Disorder effects oninfrared reflection spectra of InN films, J. Appl. Phys. 95 , 4795–4801, 2004.

    無法下載圖示 本全文未授權公開
    QR CODE