研究生: |
林和駿 Lin, Ho-Jiunn |
---|---|
論文名稱: |
農民曆二十四節氣的氣象意涵 The Meteorological Meaning of the 24 Solar Terms in the Chinese Farmer’s Calendar |
指導教授: |
洪致文
Hung, Chih -Wen |
學位類別: |
博士 Doctor |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 節氣 、氣候 、全球暖化 、農民曆 、物候 |
英文關鍵詞: | 24 solar terms, climate, global warming, traditional Chinese Calendar (Chinese Farmers’ Calendar), phenology |
DOI URL: | http://doi.org/10.6345/NTNU201901058 |
論文種類: | 學術論文 |
相關次數: | 點閱:378 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
年循環是大自然地表上最明顯的循環週期訊號,地球公轉太陽一週為一年,現今所通用的曆法,皆以年為週期。我們所存在的華人社會慣用的曆法為「農民曆」,是一種陽曆與陰曆結合在一起的曆法,以節氣詞為陽曆的刻度。本研究針對農民曆二十四節氣進行分析,探究節氣詞中與氣象有關的因子。二十四節氣詞中跟氣象有關係的為小寒、大寒、雨水、驚蟄、清明、穀雨、小暑、大暑、處暑、白露、寒露、霜降、小雪、大雪,共計有十四個。本研究使用氣象資料數據,欲了解這個中國漢代以前就完備的節氣詞之意涵,進而了解其適用的範圍與過去及未來的變遷。
研究發現,節氣詞設計的邏輯是先確立夏至、冬至、春分、秋分的時間點之後,再將二分二至中間各安放一個季節開始的立春、立夏、立秋、立冬。以上為天文因子的節氣詞,用來表示太陽位置的年循環,是幾乎固定不可變的。接下來安插天候及物候因子來提醒農業工作的進行,跟植物栽培有關係的氣溫、雨量因子紛紛進入節氣詞,跟事件「至」點有關係的是小大暑、小大寒、白露,跟事件「開始」點有關係的是驚蟄、雨水、處暑、霜降、小大雪,跟事件的過程有關係的是清明、穀雨及寒露。節氣的設計雖然一開始是當做太陽曆的刻度,但在節氣詞的設計階段,卻巧妙的包含了農業災害預防的概念,水的三相變化時間點在這裡被點了出來,雪、霜、水氣、露、雨的相態變化對動植物有不同的影響,農民曆可以說是一套農業氣象防災曆。
從研究的圖表中可以發現,所有節氣詞的描述在節氣發源地仍然適用,不論描述最熱的時段(大暑)、最冷的時段(大寒)、景色能見度開始變好的時段(清明)、雷及霜開始的時段(驚蟄、霜降)都吻合於節氣詞的時間點。但在臺灣地區只有小寒、大寒、清明、穀雨、白露、寒露、處暑可以適用,最熱的時段並未落在大暑,而在小暑。統計發現,過去60-80年間的臺灣及中國古都地區一年之中氣溫最高及最低日其實是散佈在3-6個節氣時段的,但是長期來看並沒有任何提早或延後的趨勢,僅有最冷跟最熱日氣溫的上升趨勢。使用CMIP5氣候模式推估資料來檢視未來2075-2099年可能的節氣變遷,也得到與上述相同的結果,除非發生特殊事件改變大氣環境,否則未來世紀末的大暑及大寒時間點不會提早或延後,節氣詞的防災時間點功能可以延續使用下去,繼續發揮提醒的作用。
二十四節氣系統目前仍然適用於節氣詞發源地,另外以區域氣溫參數分析的結果也顯示,中國大陸的內陸地區目前都還能適用此套太陽曆的刻度系統,而中南半島及南洋一帶並不適用,韓國、朝鮮、日本等地其氣溫節奏相似,但最高溫或最低溫出現日期雨節氣詞的描述偏差較大。
The annual cycle is the most apparent oscillation signal in the natural world on the earth's surface. The earth revolution is one year for the sun. Today's public calendars are all based on the annual cycle. The calendar used by the Chinese community is the Chinese Farmers’ Calendar. It is a calendar combining the solar calendar and the lunar one. This study analyzes the 24 solar terms of Chinese peasant calendar and explores the factors related to meteorology in the 24 solar-term systems. Among the 24 solar terms, there are 14 related to meteorology: Xiaohan (小寒: Cold), Dahan (大寒: most Cold), Yushui (雨水: Rain), Jingzhe (驚蟄: the Waking of Insects), Qingming (清明 (Clear and Bright), Guyu (穀雨: Grain Rain), Xiaoshu (小暑: Hot), Dashu (大暑: most Hot), Chushu (處暑: Heat hides), Bailu (白露: Dew), Hanlu (寒露: cold Dew), Shuangjiang (霜降: Frost), Xiaoxue (小雪: Snow) and Daxue (大雪: heavy Snow). This study uses modern meteorological observations to understand the meaning of the solar-term system established before the Chinese Han Dynasty and to understand the scope of application and the changes in the past and future.
The study found the design logics of the solar-term system: The first priority is to fix the time of the summer solstice, the winter solstice, the spring equinox, and the autumn equinox. Secondly, to set beginnings of 4 seasons into the middle of 4 former terms. The above 8 terms are the solar terms of the astronomical factor, which is used to indicate the annual cycle of the sun's position. They are almost fixed and cannot be changed. Next, insert weather and phenological factors to remind the agricultural work. Temperature and rainfall factors related to plant cultivation have entered the solar-term system. The events related to the event "pole" point are Xiaoshu (小暑: Hot), Dashu (大暑: most Hot), Xiaohan (小寒: Cold), Dahan (大寒: most Cold), Bailu (白露: Dew). The "starting" point of the incident is Jingzhe (驚蟄: the Waking of Insects), Yushui (雨水: Rain), and Qingming (清明: Clear and Bright), Chushu (處暑: Heat hides), Shuangjiang (霜降: Frost), and Xiaoxue (小雪: Snow). Although the design of the solar-term system was initially used as the scale of the solar calendar, it cleverly included the concept of agricultural disaster prevention. The calendar maker emphasizes the time point of the water phase change, so the Chines Farmers’ Calendar can be said to be a set of agricultural meteorological disaster prevention.
The solar-term system is still applicable in the birthplace of the solar terms. Dashu (大暑: most Hot) is just the hottest period in a year. Dahan (大寒: most Cold) is right on the coldest period. Qingming (清明: Clear and Bright) represents the time when the visibility of the scenery begins to improve. Shuangjiang (霜降: Frost) is the time when the frost starts to happen in the area. However, in Taiwan, only Xiaohan (小寒: Cold), Dahan (大寒: most Cold), Qingming (清明: Clear and Bright), Guyu (穀雨: Grain Rain), Bailu (白露: Dew), Hanlu (寒露: cold Dew), and Chushu (處暑: Heat hides) can be applied. The hottest time does not fall in the Dashu (大暑: most Hot), but the Xiaoshu (小寒: Cold). Statistics show that the highest and lowest temperatures in Taiwan and China's ancient capital in the past 60-80 years are scattered in 3-6 solar terms. There is no early or delayed trend. Only, there is an uptrend in the coldest and hottest day of temperatures. The results of using the CMIP5 climate model projection data to estimate possible future solar terms changes from 2075 to 2099 are the same as above. Unless once a time, some special events change the atmospheric environment, the future day of Dashu (大暑: most Hot) or Dahan (大寒: most Cold) will not be advanced or delayed. The function of the disaster prevention of the solar-term system is still reliable and play the role of` reminder.
The 24 solar system is still applicable to the birthplace of solar terms. In addition, the results of regional temperature parameter analysis also show that the inland area of mainland China can still apply the system of the solar calendar. However, the regions of the Indo-China Peninsula and South-east Asia are not applicable. The temperature rhythms of South Korea, North Korea, and Japan are similar to those of the ancient capital of China, but the day of the highest temperature or lowest temperature occurrence has a larger bias from the description of the solar terms.
小倉義光,1996:普通氣象學。張泉湧(譯),國立編譯館,台北。
中央氣象局,2011:臺灣 24 節氣與候 - 1981 ~2010 資料統計。交通部中央氣象局,台北。
王勇,2002:唐曆在東亞的傳播。台大歷史學報,30,33-51。
王勇,2005:論西漢中後期冬小麥在關中的推廣。中國歷史地理論叢,20(3),34-38。
王曉梅,2013:二十四節氣---春夏秋冬的生活智慧。中華書局,香港。
片山真人,2014:用科學方式輕鬆懂曆法。蘇暐婷(譯),臺灣東販,台北。
李永匡、王熹,1995:中國節令史。文津出版社,台北。
李思瑩、盧孟明,2014:冬季東亞季風與臺灣氣候即時監測分析:2010-2013。大氣科學,42(2),87-112。
吳秀美、徐勝一,1999。 二十四節氣在臺灣--「大暑」及「大寒」之探討。跨世紀海峽兩岸地理學術研討會論文集,庚四2-1~20頁。
林和駿、洪致文,2017:氣候變遷下21世紀末冬半季臺灣降水推估。地理學報,87(2),21-38。
洪致文,2012:臺灣降雨指數(TRI)的建立與其分析應用。地理學報,67,73-96。
孫銘宗,2018:官民共治之食品安全管制。臺灣醫學,22(5),501-507。
陶詩言,1980:中國之暴雨。科學出版社,北京。
翁叔平、楊承道,2012:臺灣地區月降雨及溫度1公里網格資料庫之建立(1960-2009)及其在近未來(2015-2039)的氣候推估應用。大氣科學,40(4),349-369。
翁叔平、郭乃文、呂珮雯,2015:高高屏地區細懸浮微粒(PM2. 5)污染事件的綜觀環境分析。大氣科學,41(1),43-64。
涂建翊、許水德,2015:2000-2014年彰師大氣候特徵分析。國立彰化師範大學文學院學報,12,85-102。
陳正之,1997:二十四節氣與常民文化。臺灣省政府,台中。
陳永明,2004:亞澳季風區的九個次季節。國立臺灣大學大氣科學系,博士論文。
陳美東,1995:古曆新探。遼寧教育出版社,瀋陽,中國。
陳泰然, 廖珮娟,2011:臺灣地區冬季鋒面系統之天氣特徵研究。大氣科學,39(2),147-176。
陳昭明、汪鳳如2000:臺灣地區降雨之長期變化特性—秋雨之準二十年振盪,大氣科學,28(4): 343-360。
陳寶良,2004:明代社會生活史。中國社會科學出版社,北京。
高國棟、陸渝蓉,1994:氣候學。明文書局,台北。
涂建翊、余嘉裕、周佳,2003:台灣的氣候。遠足文化,台北。
徐欽琦,1991:天文氣候學。中國科學技術出版社,北京,中國。
氣象出版社,1980-1987:地面氣象記錄年報,氣象出版社,北京。
國家氣象中心,1996-2001:中國地面氣象資料年報,國家氣象中心,北京
國家氣象中心氣候應用室,1988-1995:地面氣象記錄年報,國家氣象中心氣候應用室,北京。
張家誠(編),1991:中國氣候總論,氣象出版社,北京。
張家誠、王立,1994:氣候變化四問。明文出版社,臺北。
張怡蕙、劉清煌,2016:2015年7月20日臺南新化龍捲風個案分析。大氣科學,44(3),237-263。
莊安華,2018:從產地到餐桌建立食安鏈學校午餐安心吃。豐年雜誌,68(6),76 - 81。
賀蒙 海因里希 (Heinrich Hemme),2015:數字的秘密:數字、數目、度量衡與符號的由來。劉于怡(譯),稻田出版,新北市。
黃一農,1996:通書---中國傳統天文與社會的交融。漢學研究,14(2),159-182。
彭啟明、洪震宇、李咸陽,2010:樂活國民曆。遠流出版社,台北。
賈俊俠,1990:古代關中主要糧食作物的變遷。唐都學刊,1990年(3),60-66。
臺灣中華書局,1970:天文學綱要。臺灣中華書局,臺北。
臺灣氣候變遷推估與資訊平台建置計畫(TCCIP),2011:臺灣氣候變遷科學報告2011。行政院國家科學委員會,台北。
鄭天杰,1985:曆法叢談。中國文化大學出版部,臺北。
劉昭民,1992:中國歷史上氣候之變遷。臺灣商務印書館,臺北。
劉偉、王樂,2010:《范勝之書》中關中作物播種期的古今對比。現代農業科技,18,18-19。
劉復誠,1987:臺灣地區春季多雨年少雨年500毫巴高度及海溫距平差異特徵之初步分析。大氣科學,15(2),233-246。
鐵米娜葳依(曾瑞琳),1997:泰雅賽德克族人食物及其典故(一)。唐山書局,臺北。
顧庭敏(編),1991:華北平原氣候。氣象出版社,北京。
Ambaum, M.H., B.J. Hoskins, and D.B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation?. J. Climate, 14, 3495–3507, https://doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
Baliunas, S., P. Frick, D. Sokoloff, W. Soon, 1997: Time scales and trends in the central England temperature data (1659–1990): A wavelet analysis. GEOPHYSICAL RESEARCH LETTERS, 24, 11, 1351-1354.
Begall, S., J. Červený, J.ulia Neef, O. Vojtěch, and H. Burda, 2008: Magnetic alignment in grazing and resting cattle and deer. Proceedings of the National Academy of Sciences (PNAS), 105 (36), 13451-13455. doi: 10.1073/pnas.0803650105
Baldwin, M. P., L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, 2001:, The quasi‐biennial oscillation. Rev. Geophys., 39(2), 179–229, doi: 10.1029/1999RG000073.
Chou, Y.-M. , X. Jiang, Q. Liu, H.-M. Hu, C.-C. Wu, J. Liu, Z. Jiang, T.-Q. Lee, C.-C. Wang, Y.-F. Song, C.-C. Chiang, L. Tan, M. A. Lone, Y. Pan, R. Zhu, Y. He, Y.-C. Chou, A.-H. Tan, A. P. Roberts, X. Zhao, C.-C. Shen, 2018: Multidecadally resolved polarity oscillations during a geomagnetic excursion. Proceedings of the National Academy of Sciences (PNAS), 115 (36), 8913-8918. doi: 10.1073/pnas.1720404115
Climate Prediction Center, 2005: Frequently Asked Questions about El Niño and La Niña. National Centers for Environmental Prediction, US.
Cox, A., 1973. Plate tectonics and geomagnetic reversal. San Francisco, California: W. H. Freedman. 1973: 138–145, 222–228.
Crook, N. A., 2001: Understanding Hector: The Dynamics of island thunderstorms. Mon. Wea. Rev., 129, 1550-1563.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.
Ding, Y. H., 1990: Build-up, air mass transformation and propagation of Siberian high and its relation to cold surge in east Asia. Meteor. Atmos. Phys., 44, 281– 292.
Farge, M., 1992. Wavelet Transforms and their Applications to Turbulence. Annual Review of Fluid Mechanics, 24:1, 395-458.
Gamage, N. and W. Blumen, 1993: Comparative Analysis of Low-Level Cold Fronts: Wavelet, Fourier, and Empirical Orthogonal Function Decompositions. Mon. Wea. Rev., 121, 2867–2878, https://doi.org/10.1175/1520-0493(1993)121<2867:CAOLLC>2.0.CO;2
Goswami, B. N., 2012: South Asian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 21–72.
Gong, H., L. Wang, W. Chen, R. Wu, K. Wei, and X. Cui, 2014: The Climatology and Interannual Variability of the East Asian Winter Monsoon in CMIP5 Models. J. Climate, 27, 1659–1678, https://doi.org/10.1175/JCLI-D-13-00039.1
Gu, D. and S.G. Philander, 1995: Secular Changes of Annual and Interannual Variability in the Tropics during the Past Century. J. Climate, 8, 864–876, https://doi.org/10.1175/1520-0442(1995)008<0864:SCOAAI>2.0.CO;2
Huffman, G. , D. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, 2014: Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. NASA's Precipitation Processing Center, accessed 31 March, 2015, ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/
Hung, C. -w., X. Liu, and M. Yanai, 2004: Symmetry and Asymmetry of the Asian and Australian Summer Monsoons. J. Climate, 17, 2413–2426. doi: http://dx.doi.org/10.1175/1520-0442(2004)017<2413:SAAOTA>2.0.CO;2
Hung, C. -w., and H. -H. Hsu, 2008: The first transition of the Asian summer monsoon, intraseasonal oscillation, and Taiwan mei-yu. J. Climate, 21, 1552–1568, doi:10.1175/2007JCLI1457.1.
Hung, C. -w., H. -J. Lin, and H. -H. Hsu, 2014: Madden-Julian oscillation and the winter rainfall in Taiwan. J. Climate, 27, 4521-4530, doi: 10.1175/JCLI-D-13-00435.1.
Hung, C. -w., H. -J. Lin, P. -k. Kao, M. -F. Shih, and W. –y. Fong, 2016: Boreal summer intraseasonal oscillation impact on western North Pacific typhoons and rainfall in Taiwan. Terr. Atmos. Ocean. Sci., 27, 893-906.
Hsu, H.-H., 1996: Global view of intraseasonal oscillation during northern winter. J. Climate, 9, 2386–2406, doi:10.1175/1520-0442(1996)009,2386:GVOTIO.2.0.CO;2.
Hsu, H.-H., C.-T. Terng, and C.-T. Chen, 1999: Evolution of largescalecirculation and heating during the first transition of Asian summer monsoon. J. Climate, 12, 793–810.
Hsu, H.-H., 2012: East Asian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed. W. K.-M. Lau and D. E. Waliser, Eds., Springer, 73–110.
Hsu, P.-C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942–961, doi:10.1175/2010JCLI3834.1.
IPCC, 1992: Climate Change: The IPCC 1990 and 1992 Assessments---IPCC First Assessment Report Overview and Policymaker Summaries and 1992 IPCC Supplement. IPCC, Canada.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.
Jiang, X., T. Li, and B. Wang, 2004: Structures and Mechanisms of the Northward Propagating Boreal Summer Intraseasonal Oscillation. J. Climate, 17, 1022–1039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2
Kendall, M.G., 1975: Rank Correlation Methods, 4th ed., Charles Griffin, London.
Krishnamurti, T.N. and H.N. Bhalme, 1976: Oscillations of a Monsoon System. Part I. Observational Aspects. J. Atmos. Sci., 33, 1937–1954, doi: https://doi.org/10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2
Kunkel, K.E., M.A. Palecki, L. Ensor, D. Easterling, K.G. Hubbard, D. Robinson, and K. Redmond, 2009: Trends in Twentieth-Century U.S. Extreme Snowfall Seasons. J. Climate, 22, 6204–6216, https://doi.org/10.1175/2009JCLI2631.1
Lau, K. and H. Weng, 1995: Climate Signal Detection Using Wavelet Transform: How to Make a Time Series Sing. Bull. Amer. Meteor. Soc., 76, 2391–2402, https://doi.org/10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2
LinHo , and Bin Wang, 2002: The Time–Space Structure of the Asian–Pacific Summer Monsoon: A Fast Annual Cycle View*. J. Climate, 15, 2001–2019. doi:http://dx.doi.org/10.1175/1520-0442(2002)015<2001:TTSSOT>2.0.CO;2
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Madden, R. A., and P. R. Julian, 1972: Description of global scale circulation cells in the tropics with 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837, doi:10.1175/1520-0493(1994)122,0814:OOTDTO.2.0.CO;2.
Mann, H.B., 1945: Non-parametric test against trend. Econometrica, 13, 245-259.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069– 1079.
Matsumoto , J.,1992: The seasonal changes in Asian and Australian monsoon regions. J. Meteor. Soc. Japan, 70, 257-273.
Murakami, T., L.-X. Chen, and A. Xie, 1986: Relationship among seasonal cycles, low-frequency oscillations, and transient disturbances as revealed from outgoing longwave radiation data. Mon. Wea. Rev., 114, 1456–1465, doi:10.1175/1520-0493(1986)114,1456:RASCLF.2.0.CO;2.
Ogg, J. G., 2012: Geomagnetic Polarity Time Scale. in Gradstein, F. M.,J. G. Ogg, M. Schmitz, G. Ogg (Eds). The Geologic Time Scale 2012, Elsevier, MA, USA. 85-113. https://doi.org/10.1016/B978-0-444-59425-9.00005-6
Reichler, T., and J. Kim 2008. How well do coupled models simulate today’s climate?. Bull. Amer. Meteor. Soc., 89: 303–311. doi:10.1175/BAMS-89-3-303.
Sturgeon, Donald (ed.). 2011. 中國哲學書電子化計劃. http://ctext.org.
Taylor, K. E., R. J. Stouffer, G. A. Meehl, 2012.: An Overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93: 485-498. doi:10.1175/BAMS-D-11-00094.1.
Torrence, C. and G. P. Compo, 1998: A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc., 79, 61–78. Doi: https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
WMO, 1975: Manual on the Observation of Clouds and Other Meteors(WMO-NO.407). Secretariant of the World Meteorological Organization, Geneva, Swizerland.
Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi and A. Kitoh, 2012: APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia based on a Dense Network of Rain Gauges, Bulletin of American Meteorological Society, doi:10.1175/BAMS-D-11-00122.1.
Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.
Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870, doi:10.1175/BAMS-D-12-00026.1.