研究生: |
應哲宇 Che-Yu Ying |
---|---|
論文名稱: |
含芘之聯吡啶釕錯合物光物理與光化學性質研究 Photophysics and Photochemistry of Ruthenium(II) Bipyridine Complexes Containing Pyrenyl Chromophore |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 光化學 、生命期 、光物理 、淬息 |
英文關鍵詞: | pyrene, Ru-bpy type complexes, lifetime, quenching |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗調控 Ru-bpy 類錯合物的配位基,將 pyrene 和 2,2’-Dimethyl pyridine (dmb) 鍵結在一起,合成出配位基 pyr-dmb 後,再進一步合成錯合物 [Ru(bpy)2(pyr-dmb)]2+ 和 Ru(pyr-dmb)2(SCN)2 並研究其光物理與光化學性質。
從吸收光譜中可看出 [Ru(bpy)2(pyr-dmb)]2+ 在 pyrene 和 [Ru(bpy)3]2+ 間的電子耦合能力非常微弱。由於 3pyrene 的能階和 Ru 錯合物的 3MLCT 能階非常接近,因而推論 3MLCT 會和 3pyrene 形成平衡,使生命期被延長至約為 2.5 s。
將 [Ru(bpy)2(pyr-dmb)]2+ 和 [Ru(bpy)3]2+ 與淬息物進行雙分子淬息反應。當以 Ru(NH3)63+ 為淬息物時,[Ru(bpy)2(pyr-dmb)]2+ 和 [Ru(bpy)3]2+ 之淬息速率常數分別為 5.79 × 108 M-1s-1 和 1.24 × 109 M-1s-1。在 Ru(NH3)63+ 濃度為 5 mM 時,反應產率約 87.9 % 和 77.4 %。以 MV2+ 為淬息物時,[Ru(bpy)2(pyr-dmb)]2+ 和 [Ru(bpy)3]2+ 之淬息速率常數則分別為 8.68 × 108 M-1s-1 和 6.81 × 108 M-1s-1,MV2+ 濃度為 5 mM 時,產率約 91.6 % 和 65.3 %。由於 [Ru(bpy)2(pyr-dmb)]2+ 之生命期較長,故反應產率優於 [Ru(bpy)3]2+。
以 N3 dye 為模型錯合物,並和 Ru(pyr-dmb)2(SCN)2 比較。從吸收光譜可得知 pyrene 和 Ru 金屬中心的電子耦合能力很微弱,此結果與第一部分一致。N3 dye 沒有放光和生命期,修飾上 pyrene 後的Ru(pyr-dmb)2(SCN)2 則有了放光的現象,生命期約為 30 ns。將 MV2+ 與 Ru(pyr-dmb)2(SCN)2 進行雙分子淬息反應,可求得淬息速率常數 5.52 × 109 M-1s-1,反應產率 8.5 %。而與 N3 dye 反應之產率則為 5.8 %。可知修飾上 pyrene 的錯合物進行雙分子淬息反應之產率較佳,此結果也與第一部分相同。
本實驗藉由在 Ru 錯合物的配位基 bpy 上修飾能階與錯合物 3MLCT接近的有機化合物,讓原本無放光現象的 SCN- 錯合物也具有放光行為,且成功延長錯合物之生命期,進而提高雙分子淬息反應之產率。
The lifetime of ruthenium tris-bipyridine type of complexes are greatly extended by incorporating an energetically close organic triplet state. In this work, pyrenyl unit was utilized to construct a new ligand pyr-dmb (pyr-dmb = 4-methyl-4- (2-hydroxyethylpyrenyl)-2,2’-bipyridine). Two ruthenium complexes have been prepared by using this ligand, Ru(bpy)2(pyr-dmb)2+ and Ru(pyr-dmb)2(SCN)2.
Absorption spectrum ofRu(bpy)2(pyr-dmb)2+ indicates a poor electronic coupling between pyrene and Ru(bpy)32+ moiety. However, the potential of the 3pyrene is in close proximity with the 3MLCT of Ru-bpy type complexes. The lifetime of the 3MLCT was determined as 2.5 s, which is much longer than the Ru-bpy type complexes (0.6 s).
Bimolecular quenching rate constant with electron acceptor Ru(NH3)63+ are 5.79 × 108 and 1.24 × 109 M-1s-1 for Ru(bpy)2(pyr-dmb)2+ and Ru(bpy)32+; respectively, and with methyl viologen are 8.68 × 108 and 6.81 × 108 M-1s-1; respectively. Though the quenching rate constant for Ru(bpy)2(pyr-dmb)2+ are slightly smaller than Ru(bpy)32+ (or roughly the same), due to its long lifetime, the products (Rua62+ and MV+‧) yield (87.9 % and 91.6 %) are much higher than Ru(bpy)32+ (77.4% and 65.3 %) at the same quencher concentration (5 mM).
Complex Ru(pyr-dmb)2(SCN)2 has an emission that centered around 705 nm and lifetime of 30 ns. The bimolecular reaction with MV2+ gives quenching rate constant of 5.52 × 109 M-1s-1 and electron transfered product yield of 8.5 % at 5 mM MV2+. These results help to understand there action of Ru(bpy)2(SCN)2 in dye-sensitized solar cells.
1. Honda, K.; Fujishima, A. Nature 1972, 238, 37.
2. Bard, A. J. Science 1980, 207, 139.
3. Heller, A. Acc. Chem. Res. 1981, 14, 154.
4. Tufts, B. J.; Abrahams, I. L.; Santangelo, P. G.; Ryba, G. N.; Casagrande, L. G.; Lewis, N. S. Nature 1987, 326, 861.
5. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
6. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
7. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
8. Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
9. Vollmer, M.; Thomsen, N.; Wiek, S.; Seeber, F. J. Biol. Chem. 2001, 276, 5483-5490.
10. Voet, D.; Voet, J. G.; Pratt, C. W. In Fundamentals of biochemistry; Wiley: New York, 1999, pp 540-547.
11. Masayo, I.; Shigeru. I., In Electron transfer in inorganic organic and biological system; Jame, R. B.; Noboru, M.; George, M., Eds.; American Chemical Society Publishers: Washington, DC, 1991, pp163-165.
12. Magnuson, A.; Frapart, Y.; Abrahamsson, M.; Horner, O.; Åkermark, B.; Sun, L.; Girerd, J.J.; Hammarstrӧm, L.; Styring, S. J. Am. Chem. Soc. 1999, 121, 89-96.
13. Sun, L.; Burkitt, M.; Tamm, M.; Raymond, M. K.; Abrahamsson, M.; LeGourriérec, D.; Frapart, Y.; Magnuson, A.; Ping, H. K.; Brandt, P.; Tran, A.; Hammarstrӧm, L.; Styring, S. J. Am. Chem. Soc. 1999, 121, 6834-6842.
14. Takashi, H.; Yutaka, H.; Hisanobu, O. J.Am.Chem.Soc. 1998, 120, 4910-4915.
15. (a) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85. (b) Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759.
16. Hauser, A. Chemical Physics Letters. 1990, 173, 507–512
17. Hipps, K. W.; Crosby. G. A. J. Am. Chem. Soc. 1975, 97, 7042.
18. Hager, G. D.; Crosby. G. A. J. Am. Chem. Soc. 1975, 97, 7031.
19. Kober, E. M.; Meyer, T. J. Inorg. Chem. 1979, 18, 3177.
20. Caspar, J.V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583.
21. Houten, J. V.; Watts, R. J. J. Am Chem. Soc. 1976, 98, 4853.
22. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin complexes, Academic Press, London, 1992.
23. Kalyanasundaram, K. Coordination Chemistry Reviews. 1982, 46, 159–244.
24. James E. Yarnell; Deaton J. C.; McCusker C. E.; Castellano F. N. Inorg. Chem. 2011, 50, 7820-7830.
25. Tyson D. S.; Castellano. F. N. J. Phys. Chem. A. 1999, 103, 10955-10960.
26. Wilson G. J.; Launikonis A.; Wolfgang H. F.; Sasse, Albert W.-H. Mau. J. Phys. Chem. A 1997, 101, 4860-4866.
27. Montalti; Marco; Alberto Cedi; Luca Prodi; Gandolfi M. T. (2006). Handbook of Photochemistry 3rd edition. 6000 Broken Sound Prkway NW, Suite 200 Boca Raton, FL: CRC press Taylor & Francis Group. pp. 379-404.
28. Hiroshi M.; Hiroshi M.; Mataga N. Laser Chem. 1983, 1, 357-386.
29. Lomoth R.; Hӓupl T.; Johansson O.; Hammarstrӧm L. Chem. Eur. J. 2002, 8, 102-111.
30. Yasuhiro T.; Moser J. E.; Grätzel M.; David R. K.; Durrant J. R. J. Phys. Chem. 1996, 100, 20056-20062.
31. Kuciauskas D.; Monat J. E.; Villahermosa R.; Gray H. B.; Lewis N. S.; McCusker J. K. J. Phys. Chem. B 2002, 106, 9347-9358.