簡易檢索 / 詳目顯示

研究生: 李岱蓉
Lee, Dai-Rong
論文名稱: 以基於專利與商標探勘之競爭情報辨識新事業發展機會
Identifications of New Business Opportunities Based on Competitive Intelligence Being Derived from Patent and Trade Mark Mining Results
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 162
中文關鍵詞: 商業機會專利探勘磁懸浮離心壓縮機商標
英文關鍵詞: Business opportunity, Patent mining, Magnetic bearing centrifugal compressor technology, Trade mark
DOI URL: http://doi.org/10.6345/NTNU201901045
論文種類: 學術論文
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著技術的發展與全球化所造成的激烈競爭,企業必須尋找新的商機,以求持續成長,永續經營。辨識商機並不容易,過去,經理人透過個人經驗與公司內、外部資源收集資訊,進行判斷,對於後進廠商或者中小企業,由於經驗與資源之限制,經理人往往無法做出正確決策。近年來,由於各先進國家之專利與商標資料庫與資料探勘技術日益完善,專利與商標探勘成為辨識商機之新興技術。雖然部份學者提出基於優劣距離法(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)與關聯規則分析之專利組合與商標探勘技術,唯優劣距離法與傳統關聯規則分析有其無法自圓其說之處、或準確率有待提昇,而如何同時兼顧多種評估準則,同時考量專利與商標探勘結果所揭露之機會,現有研究中極為少見,因此,本研究擬導入結合新型多準則分析模式之DNP-mV與約略集合方法(Rough Set),結合專利組合及商標探勘,辨識新的商機。本研究先依據專利探勘結果,依據餘弦相似度所建構之技術相似度指標以及由技術獲利、技術影響性、技術應用性、與技術競爭性四大指標所建構之技術能力指標,建構由技術相似度與技術能力指標所組成之專利組合,並選擇技術相似度高、技術能力佳之競爭廠商,為主要分析對象。於定義競爭廠商之後,並進而進行商標探勘,以商標相似性與具潛力應用兩大指標進行機會分析,探勘與競爭廠商相較下技術在落後領域競爭廠商之商標資料庫,以基於優勢關係的約略集合,探勘技術支持度高之應用,為目標廠商最具潛力之機會。本研究將以我國冷凍空調廠商為實證研究對象,分析磁浮離心式壓縮機之專利及商標組合,並探討商機。研究結果將被用來分析企業進入市場獲得的經濟價值以及傳遞給客戶的技術價值的決策標準。

    With the development of technology and the fierce competition caused by globalization, enterprises must look for new business opportunities in order to sustainable growth and operation. It is not easy to identify business opportuni-ties. In the past, managers collected information, made judgments through personal experience, internal and external resources of the company. In recent years, due to the improvement of patent and trade mark database and data mining technology in advanced countries, patent and trade mark mining has become a new technology to identify business opportunities. Although some of scholars put forward based on the Technique for Order Preference by Similar-ity to an Ideal Solution(TOPSIS), association rules mining with patents and trade marks mining technology, but the combination of TOPSIS and the asso-ciation rules mining have been controversial and the accuracy need to be promoted. The existing research about how to simultaneously consider the multiple criteria, and identify the opportunity after patent and trade mark mining is rare. Therefore, the purpose of this study is using Rough Set, DNP, VIKOR with patent portfolio and trade mark mining to identify new business opportunities. Based on the results of patent mining, this study firstly constructs technical similarity indicators based on cosine similarity and technical capa-bility indicators constructed by four major indicators: technology profitability, technology impact, technology applicability, and technology competiveness. A combination of technical similarity and technical capability indicators, and select competitors with high technical similarity and good technical capabilities as the main analysis object. After defining the competitors, and then conducting trade mark mining, the two major indicators of trade mark similarity and po-tential application are used for opportunity analysis. Afterwards mining the trade mark database of competitors which compared with the other, in techni-cally backward areas. Then using Rough Set method to identify the high tech-nical support applications which are the most potential opportunities for target manufacturers. This study will analyze the patent and trade mark combination of magnetic bearing centrifugal compressor and identify the business opportu-nities. The research results will be used to analyze the decision-making criteria for the economic value obtained by enterprises entering the market and the technical value delivered to customers.

    摘要 i Abstract ii Table of Contents iv List of Table vi List of Figure vii Chapter 1 Introduction 1 1.1 Research Backgrounds 1 1.2 Research Motivations 2 1.3 Research Purposes 5 1.4 Research Methods 5 1.5 Research Limitation 6 1.6 Research Framework 6 1.7 Thesis Structure 9 Chapter 2 Literature review 11 2.1 Data Mining 11 2.2 Patent Mining 12 2.3 Patent and trade mark information 14 2.4 Patent portfolio analysis 15 2.5 New Business Opportunities 17 Chapter 3 Research Method 21 3.1 Patent and Trade Mark Portfolio Analysis 21 3.2 Modified Delphi Method 28 3.3 Rough Set Theory 30 3.4 DEMATEL based Network Process (DNP) 34 3.5 The VIKOR 39 Chapter 4 Empirical Study 43 4.1 Data Collection 43 4.2 Patent portfolio analysis and target firm identification results 44 4.3 Trade mark analysis and business opportunity analysis results 55 4.4 In-depth analysis of business opportunities 64 Chapter 5 Discussion 135 5.1 The Approach of Identifying New Business Opportunity 135 5.2 The Strategy from New Opportunity Identification 137 5.3 Future Research 140 Chapter 6 Conclusions 141 References 143 Appendix: Experts Questionnaire 150 Appendix: Technology similarity analysis results and Technology capability analysis results 154 Appendix: Business areas based on NICE trade mark classification 156 Appendix: Patents for Analysis 160

    Ackermann, C., McEnally, R., & Ravenscraft, D. (1999). The performance of hedge funds: Risk, return, and incentives. The journal of Finance, 54(3), 833-874.

    Antonio Ghezzi, R. B. a. A. R. (2014). The relationship between Open Innovation and Strategy: data-driven analysis of the Mobile Value Services Industry. 47th Hawaii International Conference on System Science, 1073-1082.

    Chesbrough, H. (2003). Open innovation. USA, Boston: Harvard Business School Press.

    Cheng, G., Huang, C., Deng, H., & Wang, H. (2012). Diabetes as a risk factor for dementia and mild cognitive impairment: a meta‐analysis of longitudinal studies. Internal medicine journal, 42(5), 484-491.

    Chen-Hsiung, Wang. (2016). Open innovation strategy based on the patent map and competence set expansion. National Taiwan Normal University, Taiwan. MA.

    Deng, J. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294.

    Deng, J. (1985). Fundamental methods of grey systems. Wuhan, China: Huazhoug University of Science and Technology.

    Deng, J. (1986). Grey forecasting and decision. Wuhan, China: Huazhong University of Science and Technology Press

    Deng, J. (1988). Grey system book. Windsor, England: Science and Technology Information Services

    Deng, J. (1989). Introduction to grey system theory. The Journal of grey system, 1(1), 1-24.

    Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3), 458-467.

    Fagnant, D., & Kockelman, K. M. (2013). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167-181

    Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. London, England: Cambridge university press.

    Foss, T. S. a. N. J. (2015). Business models for open innovation: Matching heterogeneous open innovation strategies with business model dimensions. European Management Journal, 33, 201-213.

    Göhring, D., Latotzky, D., Wang, M., & Rojas, R. (2013). Semi-autonomous car control using brain computer interfaces Intelligent Autonomous Systems, 12, 393-408

    Ging Chen, Gang Zheng and You-shan Su (2015). Innovation Management: Winning Competitive Advantage in the Globe. Taipei, Taiwan: BEST-WISE

    Gould, N. P. a. J. (2016). Strategy and Communication for Innovation- Integrative Perspectives on Innovation in the Digital Economy. Cham, Switzerland: Springer International Publishing AG.

    Huang, C.-Y., Hsu, P.-C., & Tzeng, G.-H. (2012). Evaluating cloud computing based telecommunications service quality enhancement by using a new hybrid MCDM model. Berlin, Germany: Springer.

    Huizingh, C. C. J. C. a. E. K. R. E. (2014). When Is Open Innovation Beneficial? The Role of Strategic Orientation. Product Development & Management Association, 31(6), 1235-1253.

    Lu C., Lan J. & Wang Z.. (2006). Aggregation of fuzzy opinions under group decision-making based on similarity and distance. Journal of Systems Science and Complexity, 19(1), 63-71.

    Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., and Pratt, V. (2011). Towards fully autonomous driving: Systems and algorithms. IEEE Intelligent Vehicles Symposium, 4, 163-168

    Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48.

    Millard-Ball, A. (2018). Pedestrians, autonomous vehicles, and cities. Journal of planning education and research, 38(1), 6-12.

    Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.

    Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research, 178(2), 514-529.

    Opricovic, S., & Tzeng, G. H. (2002). Multicriteria planning of post‐earthquake sustainable reconstruction. Computer‐Aided Civil and Infrastructure Engineering, 17(3), 211-220.

    Porter, M. E., & Millar, V. E. (1985). How information gives you competitive advantage: Harvard Business Review Cambridge, MA.

    Stembridge, B., & Corish, B. (2004). Patent data mining and effective portfolio management. Intellect Asset Manage(October/November), 30-35.

    Schutte, Corne., & Marais, Stephen. (2010). The development of open innovation models to assist the innovation process. University of Stellenbosch, South Africa, MA.

    Sivak, M. a. S., Brandon. (2015). Road safety with self-driving vehicles: General limitations and road sharing with conventional vehicles. Michigan, USA: The University of Michigan.

    Tzeng, G.-H., & Huang, C.-Y. (2012). Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems.Annals of Operations Research, 197(1), 159-190.

    Tzeng, G.-H., & Huang, J.-J. (2011). Multiple attribute decision making: methods and applications. Florida, USA: CRC press.

    Ashton, W. B., & Sen, R. K. (1988). Using patent information in technology business planning—I. Research-Technology Management, 31(6), 42-46.

    Braha, D. (2013). Data mining for design and manufacturing: methods and applications (Vol. 3): Springer Science & Business Media.

    Breitzman, A., & Thomas, P. (2002). Using patent citation analysis to target/value M&A candidates. Research-Technology Management, 45(5), 28-36.

    Brem, A., Nylund, P. A., & Hitchen, E. L. (2017). Open innovation and intellectual property rights: How do SMEs benefit from patents, industrial designs, trademarks and copyrights? Management Decision, 55(6), 1285-1306.

    Carree, M., Piergiovanni, R., Santarelli, E., & Verheul, I. (2015). Factors favoring innovation from a regional perspective: A comparison of patents and trademarks. International entrepreneurship and management journal, 11(4), 793-810.

    Chamoun, M., Rulliere, R., Haberschill, P., & Peureux, J.-L. (2014). Experimental and numerical investigations of a new high temperature heat pump for industrial heat recovery using water as refrigerant. International Journal of Refrigeration, 44, 177-188.

    Choi, J., & Hwang, Y.-S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change, 83, 170-182.

    Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233-242.

    Freimer, M., & Yu, P. (1976). Some new results on compromise solutions for group decision problems. Management science, 22(6), 688-693.

    Gaglio, C. M. (2018). Opportunity identification: review, critique, and suggested research directions Reflections and Extensions on Key Papers of the First Twenty-Five Years of Advances (pp. 1-47): Emerald Publishing Limited.

    Gans, J. S., & Stern, S. (2003). The product market and the market for “ideas”: commercialization strategies for technology entrepreneurs. Research policy, 32(2), 333-350.

    Geum, Y., Lee, S., Yoon, B., & Park, Y. (2013). Identifying and evaluating strategic partners for collaborative R&D: Index-based approach using patents and publications. Technovation, 33(6-7), 211-224.

    Grimaldi, M., Cricelli, L., Di Giovanni, M., & Rogo, F. (2015). The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning. Technological Forecasting and Social Change, 94, 286-302.

    Hand, D. J. (2007). Principles of data mining. Drug safety, 30(7), 621-622.

    Hanssens, D. M. (1980). Market response, competitive behavior, and time series analysis. Journal of Marketing Research, 470-485.

    He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464-472.

    Huang, C.-Y., Kao, Y.-S., Wu, M.-J., & Tzeng, G.-H. (2013). Deriving factors influencing the acceptance of Pad Phones by using the DNP based UTAUT2 framework. Paper presented at the Technology Management in the IT-Driven Services (PICMET), 2013 Proceedings of PICMET'13:.

    Huang, C.-Y., & Ting, Y.-H. (2012). Derivations of factors influencing the word-of-mouth marketing strategies for smart phone applications by using the Fuzzy DEMATEL based Network Process. Paper presented at the Fuzzy Theory and it's Applications (iFUZZY), 2012 International Conference on.

    Jin, J., Ji, P., & Gu, R. (2016). Identifying comparative customer requirements from product online reviews for competitor analysis. Engineering Applications of Artificial Intelligence, 49, 61-73.

    Jun, S., & Lee, S.-J. (2012). Emerging technology forecasting using new patent information analysis. Int. J. Softw. Eng. Appl, 6.

    Lee, S., Mortara, L., Kerr, C., Phaal, R., & Probert, D. (2012). Analysis of document-mining techniques and tools for technology intelligence: discovering knowledge from technical documents. International Journal of Technology Management, 60(1-2), 130-156.

    Li, N.-G., Tang, Y.-P., Duan, J.-A., & Shi, Z.-H. (2014). Matrix metalloproteinase inhibitors: a patent review (2011–2013). Expert opinion on therapeutic patents, 24(9), 1039-1052.

    Ma, J., & Porter, A. L. (2015). Analyzing patent topical information to identify technology pathways and potential opportunities. Scientometrics, 102(1), 811-827.

    Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32-48.

    Narver, J. C., & Slater, S. F. (1990). The effect of a market orientation on business profitability. Journal of marketing, 54(4), 20-35.

    Nordman, E. R., & Tolstoy, D. (2016). The impact of opportunity connectedness on innovation in SMEs’ foreign-market relationships. Technovation, 57, 47-57.

    O’Mara-Eves, A., Thomas, J., McNaught, J., Miwa, M., & Ananiadou, S. (2015). Using text mining for study identification in systematic reviews: a systematic review of current approaches. Systematic reviews, 4(1), 5.

    Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.

    Parr, R. L. (2018). Intellectual property: valuation, exploitation, and infringement damages: John Wiley & Sons.

    Paulus, P. B., & Dzindolet, M. T. (1993). Social influence processes in group brainstorming. Journal of Personality and Social Psychology, 64(4), 575.

    Pawlak, Z. (1982). Rough sets. International journal of computer & information sciences, 11(5), 341-356.

    Pawlak, Z. (2002). Rough sets, decision algorithms and Bayes' theorem. European Journal of Operational Research, 136(1), 181-189.

    Söllner, A., & Rese, M. (2001). Market segmentation and the structure of competition: applicability of the strategic group concept for an improved market segmentation on industrial markets. Journal of Business Research, 51(1), 25-36.

    Sanadgol, D. (2006). Active control of surge in centrifugal compressors using magnetic thrust bearing actuation.

    Seol, H., Lee, S., & Kim, C. (2011). Identifying new business areas using patent information: A DEA and text mining approach. Expert Systems with Applications, 38(4), 2933-2941.

    Shane, S., & Nicolaou, N. (2015). Creative personality, opportunity recognition and the tendency to start businesses: A study of their genetic predispositions. Journal of Business Venturing, 30(3), 407-419.

    Shaout, A., & Yousif, M. K. (2014). Performance evaluation–Methods and techniques survey. International Journal of Computer and Information Technology, 3(5), 966-979.

    Smit, H. T., & Trigeorgis, L. (2006). Strategic planning: valuing and managing portfolios of real options. R&D Management, 36(4), 403-419.

    Solomon, M. R., Dahl, D. W., White, K., Zaichkowsky, J. L., & Polegato, R. (2014). Consumer behavior: Buying, having, and being (Vol. 10): Pearson London.

    Stobbs, G. A., & Biernacki, J. V. (2012). Computer-implemented patent portfolio analysis method and apparatus: Google Patents.

    Taylor, D. W., Berry, P. C., & Block, C. H. (1958). Does group participation when using brainstorming facilitate or inhibit creative thinking? Administrative Science Quarterly, 23-47.

    Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.

    Uzhegov, N., Smirnov, A., Park, C. H., Ahn, J. H., Heikkinen, J., & Pyrhönen, J. (2017). Design aspects of high-speed electrical machines with active magnetic bearings for compressor applications. IEEE Transactions on Industrial Electronics, 64(11), 8427-8436.

    Verspagen, B., Criscuolo, P., & Narula, R. (2005). The role of home and host country innovation systems in R&D internationalisation: A patent citation analysis. Economics of innovation and new technology, 14(5), 417-433.

    Walczak, B., & Massart, D. (1999). Rough sets theory. Chemometrics and intelligent laboratory systems, 47(1), 1-16.

    Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., & Zioło, M. (2018). Generalised framework for multi-criteria method selection. Omega. doi:https://doi.org/10.1016/j.omega.2018.07.004

    Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann.

    Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.

    Yu, P.-L. (1973). A class of solutions for group decision problems. Management science, 19(8), 936-946.

    Zaki, M. J., Meira Jr, W., & Meira, W. (2014). Data mining and analysis: fundamental concepts and algorithms: Cambridge University Press.

    Zhang, L., Li, L., & Li, T. (2015). Patent mining: a survey. ACM SIGKDD Explorations Newsletter, 16(2), 1-19.

    Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107.

    Weibo Nien, Zemin Chen, Yuchang Zhang, Lixin Chen, Zongxian Yang and Zhiwei Xu (2017). Unmanned self-driving/self-driving technology exploration. journal of information and communication technology, 107, 5-12

    Yu, P.-L. (1973). A class of solutions for group decision problems. Management science, 19(8), 936-946.

    Zhang, L., Li, L., & Li, T. (2015). Patent mining: a survey. ACM SIGKDD Explorations Newsletter, 16(2), 1-19.
    Zeleny, M. (1982). Multiple criteria problem solving. New York, USA: McGraw-Hill,.

    無法下載圖示 本全文未授權公開
    QR CODE