簡易檢索 / 詳目顯示

研究生: 楊景奕
Yang, Jing-Yi
論文名稱: 用於細胞配對與融合之微流體技術發展
Development of a Microfluidic Technique for Cell Pairing and Fusion
指導教授: 許佳賢
Hsu, Chia-Hsien
鄭慶民
Cheng, Ching-Ming
口試委員: 陳品銓
Chen, Pin-Chuan
范育睿
Fan, Yu-Jui
許佳賢
Hsu, Chia-Hsien
鄭慶民
Cheng, Ching-Ming
口試日期: 2023/01/06
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 微流體細胞配對細胞融合
英文關鍵詞: Microfluidics, Cell pairing, Cell fusion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300178
論文種類: 學術論文
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今融合細胞,已被廣泛應用於生物醫學相關研究,例如誘導形成幹細胞、癌症免疫療法、生產單株抗體、基因圖譜及組織再生等。在融合過程中,最關鍵的步驟,就是確保細胞配對時能緊密接觸,以提高融合效率。在本論文中,我們提出了一種微流體細胞配對融合晶片,該晶片能透過流體動力學(Hydrodynamics)與微結構抓取與配對細胞,研究中利用鞘流(Sheath flow)與斯托克陷阱(Stokes trap)的方式,進行細胞集中與配對,在鞘流與中心流流速比4:1的情況下,能將細胞集中於20 μm以內。研究中所使用之細胞為NIH-3T3,在細胞密度為2×105 cells/ml時,平均配對時間約為20秒。該晶片能透過流場對細胞施加正向應力,使細胞被擠壓,由原本的圓形擠壓成橢圓形,藉以增加配對時細胞之間的接觸面積,在接觸面積增加的情況下,應可增加細胞融合之效果,並應用於後續細胞融合之研究。

    Fusion cells have been extensively used in biomedical research, such as induced stem cell formation, cancer immunotherapy, monoclonal antibodies production, gene mapping, and tissue regeneration. In the process of fusion, the key step is to ensure that cells are in close contact when they are paired, which increase the efficiency of fusion. In this thesis, we propose a microfluidic chip to capture and pair cells by using hydrodynamics and microstructure. In this research, the design of the microfluidic chip is based on sheath flow and Stokes trap. The sheath flow method is used for gathering cells, and the Stokes trap creates a flow field that applies normal stress to increase the contact area of cells when pairing. Under the condition of sheath flow and central flow ratio of 4:1, the cells can be centralized within 20 μm. The cells used in the research are NIH-3T3. The average pairing time is about 20 seconds when the density of the cells is 2×105 cells/ml. The chip can apply positive stress on the cells through the flow field, which squeezed the cells from the original circle to an ellipse so as to increase the contact area between the cells during pairing. When the contact area increases, it should enhance the effect of cell fusion and apply to the subsequent research of cell fusion.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 細胞融合原理 2 1.2.2 利用微結構配對細胞之一 6 1.2.3 利用微結構配對細胞之二 8 1.2.4 離心輔助微孔配對細胞 10 1.2.5 介電泳配對細胞 11 1.3 研究目的 13 第二章 材料與方法 14 2.1 流場模擬 14 2.2 粒子慣性力與流場阻力分析 15 2.3 鞘流集中效果分析 16 2.4 正向應力分析 17 2.5 晶片製作 18 2.6 細胞培養 20 2.7 細胞準備 20 2.8 流道表面處理 21 2.9 細胞懸浮液與鞘流注入 21 2.10 細胞拉伸率分析 22 2.11 細胞融合 22 2.12 實驗影像拍攝與分析 22 第三章 實驗結果與分析 23 3.1 晶片設計 23 3.1.1 鞘流結構 25 3.1.2 配對結構 26 3.2 晶片製作 28 3.2.1 晶片光罩設計 28 3.2.2 晶片模型微影製程 30 3.2.3 晶片成品 31 3.3 流速選擇 33 3.4 晶片流場分析 35 3.4.1 鞘流結構對於細胞集中效果分析 36 3.4.2 配對結構周圍流場速度分析 43 3.4.3 配對結構中正向應力分析 52 3.5 晶片操作 53 3.5.1 實驗設置 53 3.5.2 細胞配對 56 3.5.3 細胞融合 58 3.6 正向應力與拉伸應力對細胞型態之影響 59 第四章 結論與未來展望 60 參考文獻 61

    N.G. Brukman, B. Uygur, B. Podbilewicz, L.V.J.J.o.C.B. Chernomordik, How cells fuse, 218(5) (2019) 1436-1451.
    B.M. Ogle, M. Cascalho, J.L.J.N.r.M.c.b. Platt, Biological implications of cell fusion, 6(7) (2005) 567-575.
    Y.-C. Hsiao, C.-H. Wang, W.-B. Lee, G.-B.J.B. Lee, Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip, 12(3) (2018) 034108.
    A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J.J.N.m. Voldman, Microfluidic control of cell pairing and fusion, 6(2) (2009) 147-152.
    D.P. Taylor, P. Mathur, P. Renaud, G.V.J.L.o.a.C. Kaigala, Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences, (2022).
    D. Huber, A. Oskooei, X. Casadevall i Solvas, A. Demello, G.V.J.C.r. Kaigala, Hydrodynamics in cell studies, 118(4) (2018) 2042-2079.
    K. Miyado, K. Yamatoya, W. Kang, N. Kawano, Regulation of sperm-egg fusion at the plasma membrane, Reproductive and Developmental Strategies, Springer2018, pp. 549-568.
    S.C. Sampath, S.C. Sampath, D.P.J.S.m. Millay, Myoblast fusion confusion: the resolution begins, 8(1) (2018) 1-10.
    P. De Baetselier, E. Roos, L. Brys, L. Remels, M. Gobert, D. Dekegel, S. Segal, M.J.C. Feldman, M. Reviews, Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells, 3(1) (1984) 5-24.
    X. Wang, S. Chen, Y.T. Chow, C.-w. Kong, R.A. Li, D.J.R.A. Sun, A microengineered cell fusion approach with combined optical tweezers and microwell array technologies, 3(45) (2013) 23589-23595.
    A. Bahadori, L.B. Oddershede, P.M.J.N.R. Bendix, Hot-nanoparticle-mediated fusion of selected cells, 10(6) (2017) 2034-2045.
    M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, M.J.B. Washizu, Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array, 4(2) (2010) 022808.
    B.J.A.R.C.D.B. Podbilewicz, Virus and cell fusion mechanisms, 30(1) (2014) 111-139.
    S. Martens, H.T.J.N.r.M.c.b. McMahon, Mechanisms of membrane fusion: disparate players and common principles, 9(7) (2008) 543-556.
    A. Yoshihara, S. Watanabe, I. Goel, K. Ishihara, K.N. Ekdahl, B. Nilsson, Y.J.B. Teramura, Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids, 253 (2020) 120113.
    B.R.J.E.B.J. Lentz, PEG as a tool to gain insight into membrane fusion, 36(4) (2007) 315-326.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The lipid bilayer, Molecular Biology of the Cell. 4th edition, Garland Science2002.
    S.W. Burgess, T.J. McIntosh, B.R.J.B. Lentz, Modulation of poly (ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation, 31(10) (1992) 2653-2661.
    L. Huang, Y. Chen, W. Huang, H.J.L.o.a.C. Wu, Cell pairing and polyethylene glycol (PEG)-mediated cell fusion using two-step centrifugation-assisted single-cell trapping (CAScT), 18(7) (2018) 1113-1120.
    E. Messineo, A. Pollins, W.J.J.o.C.N. Thayer, Optimization and evaluation of an in vitro model of PEG-mediated fusion of nerve cell bodies, 63 (2019) 189-195.
    A. Chen, E. Leikina, K. Melikov, B. Podbilewicz, M.M. Kozlov, L.V.J.J.o.c.s. Chernomordik, Fusion-pore expansion during syncytium formation is restricted by an actin network, 121(21) (2008) 3619-3628.
    M.M. Kozlov, L.V.J.C.o.i.s.b. Chernomordik, Membrane tension and membrane fusion, 33 (2015) 61-67.
    L.V. Chernomordik, M.M.J.A.r.o.b. Kozlov, Protein-lipid interplay in fusion and fission of biological membranes, 72(1) (2003) 175-207.
    M.M. Kozlov, L.V.J.B.J. Chernomordik, A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements, 75(3) (1998) 1384-1396.
    B. Dura, Y. Liu, J.J.L.o.a.C. Voldman, Deformability-based microfluidic cell pairing and fusion, 14(15) (2014) 2783-2790.
    C. Wu, R. Chen, Y. Liu, Z. Yu, Y. Jiang, X.J.L.o.a.C. Cheng, A planar dielectrophoresis-based chip for high-throughput cell pairing, 17(23) (2017) 4008-4014.
    X. Liu, W. Zhang, U. Farooq, N. Rong, J. Shi, N. Pang, L. Xu, L. Niu, L.J.L.o.a.C. Meng, Rapid cell pairing and fusion based on oscillating bubbles within an acoustofluidic device, 22(5) (2022) 921-927.
    M. Şen, K. Ino, J. Ramón-Azcón, H. Shiku, T.J.L.o.a.C. Matsue, Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes, 13(18) (2013) 3650-3652.
    G. Pendharkar, Y.-T. Lu, C.-M. Chang, M.-P. Lu, C.-H. Lu, C.-C. Chen, C.-H.J.C. Liu, A Microfluidic Flip-Chip Combining Hydrodynamic Trapping and Gravitational Sedimentation for Cell Pairing and Fusion, 10(11) (2021) 2855.
    Y. Kimura, M. Gel, B. Techaumnat, H. Oana, H. Kotera, M.J.E. Washizu, Dielectrophoresis‐assisted massively parallel cell pairing and fusion based on field constriction created by a micro‐orifice array sheet, 32(18) (2011) 2496-2501.
    J. Xu, X.J.I.J.o.H. Chen, M. Transfer, Mixing performance of a fractal-like tree network micromixer based on Murray’s law, 141 (2019) 346-352.
    Y. Zheng, J. Chen, J.A.J.N.c. López, Flow-driven assembly of VWF fibres and webs in in vitro microvessels, 6(1) (2015) 1-11.
    A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I.J.M. Papautsky, nanofluidics, Inertial microfluidics for continuous particle filtration and extraction, 7(2) (2009) 217-226.
    C.-H. Hsu, D. Di Carlo, C. Chen, D. Irimia, M.J.L.o.a.C. Toner, Microvortex for focusing, guiding and sorting of particles, 8(12) (2008) 2128-2134.
    G.-B. Lee, C.-C. Chang, S.-B. Huang, R.-J.J.J.o.M. Yang, Microengineering, The hydrodynamic focusing effect inside rectangular microchannels, 16(5) (2006) 1024.
    S.S. Kohles, N. Nève, J.D. Zimmerman, D.C. Tretheway, Mechanical stress analysis of microfluidic environments designed for isolated biological cell investigations, (2009).
    M. Marc, MIP synthesis, characteristics and analytical application, Elsevier2019.
    G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D.E.J.A.r.o.b.e. Ingber, Soft lithography in biology and biochemistry, 3(1) (2001) 335-373.
    T.J.M.E. Fujii, PDMS-based microfluidic devices for biomedical applications, 61 (2002) 907-914.
    J.-N. Klatt, T. Hutzenlaub, T. Subkowski, T. Müller, S. Hennig, R. Zengerle, N.J.A.A.P.M. Paust, Blocking protein adsorption in microfluidic chips by a hydrophobin coating, 3(7) (2021) 3278-3286.
    M. Urbanska, H.E. Muñoz, J. Shaw Bagnall, O. Otto, S.R. Manalis, D. Di Carlo, J.J.N.m. Guck, A comparison of microfluidic methods for high-throughput cell deformability measurements, 17(6) (2020) 587-593.
    J. Yang, M.H. Shen, Polyethylene glycol-mediated cell fusion, Nuclear Reprogramming, Springer2006, pp. 59-66.
    J.P. Golden, J.S. Kim, J.S. Erickson, L.R. Hilliard, P.B. Howell, G.P. Anderson, M. Nasir, F.S.J.L.o.a.C. Ligler, Multi-wavelength microflow cytometer using groove-generated sheath flow, 9(13) (2009) 1942-1950.
    H. Amini, W. Lee, D.J.L.o.a.C. Di Carlo, Inertial microfluidic physics, 14(15) (2014) 2739-2761.
    J.B. Dahl, V. Narsimhan, B. Gouveia, S. Kumar, E.S. Shaqfeh, S.J.J.S.M. Muller, Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow, 12(16) (2016) 3787-3796.
    A. Shenoy, C.V. Rao, C.M. Schroeder, Stokes trap for multiplexed particle manipulation and assembly using fluidics, 113(15) (2016) 3976-3981.
    D. Kumar, C.M. Richter, C.M.J.S.M. Schroeder, Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow, 16(2) (2020) 337-347.
    K.B. Roth, C.D. Eggleton, K.B. Neeves, D.W.J.L.o.a.C. Marr, Measuring cell mechanics by optical alignment compression cytometry, 13(8) (2013) 1571-1577.
    M. Takken, R.J.S. Wille, Simulation of Pressure-Driven and Channel-Based Microfluidics on Different Abstract Levels: A Case Study, 22(14) (2022) 5392.
    S.K. Samantaray, S.S. Mohapatra, B.J.E.S. Munshi, a.I.J. Technology, A numerical study of the wall effects for Newtonian fluid flow over a cone, 20(6) (2017) 1662-1675.
    M.H. Amer, L.J. White, K.M.J.J.o.P. Shakesheff, Pharmacology, The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies, 67(5) (2015) 640-650.

    下載圖示
    QR CODE