簡易檢索 / 詳目顯示

研究生: 曾祈昂
Chi-Ang Tseng
論文名稱: 氟化PEDOT:PSS介面之偶極回復S-shaped曲線並提升有機太陽能電池耐久度之應用
The application of fluorine-modified PEDOT:PSS on recovering the S-shaped curve and improving reliability for the organic solar cells
指導教授: 陳家俊
Chen, Chia-Chun
陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 有機太陽能電池氟化處理
英文關鍵詞: organic solar cell, Fluorine treatment, S-shape
論文種類: 學術論文
相關次數: 點閱:106下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PEDOT:PSS高分子在有機太陽能電池中常用來當作電洞傳導層,具有吸水性,在工業生產製程上造成增加環境控制成本、降低良率、與增加設備維護成本。本研究中提出了一種簡單、低成本、容易施行、且可與現行製程具高度相容性之方法,預期可以大幅度降低生產過程中環境控制成本與提升產品良率及耐久度。
    本研究中的有機太陽能電池以ITO基板塗佈上PEDOT:PSS成膜再利用旋轉塗佈P3HT與PCBM混合層(blend)當作吸光材料,並蒸鍍BCP當作電洞阻擋層(hloe blocking layer)和Ag當作陰極。
    控制環境濕度後可以控制環境濕度對PEDOT:PSS的影響造成S-shaped曲線發生,利用含氟分子修飾改質後,成功使S-shaped曲線回復為理想的二極體曲線。進一步探討機制為在PEDOT:PSS與P3HT:PCBM介面形成理想的偶極方向,增加電洞傳導與電洞收集能力,此外,提升元件效率高達20%。
    提高元件的耐久度研究上,相較於標準元件其耐久時間可延長三倍。元件封裝後經過一個月,未經氟修飾之元件,效率只剩下0.61%,而經過F2含氟分子修飾之元件效率為1.88% 。 探討效率降低的主要原因是來自Voc的大幅下降(從0.64 V降至0.45 V),原因在於BCP緩衝層損壞所造成。

    In this study, we investigate the s-shape recovery and the improvement of reliability of the fluorine-modified poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) buffer layer based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blends polymer photovoltaic cells.
    The results of humidity-controlled experiments show that the degradation of the device performance can be recovered simply by the interfacial modification, even though the PEDOT:PSS layer has been seriously deteriorated by the air ambient. The anomalous S-shape photocurrent owing to the deterioration of the PEDOT:PSS layer can be rectified significantly as an ideal diode behavior by the surface treatments with fluorine-containing materials. Accordingly, the great enhancements of Fill factor from 30% to 62% can be achieved, where the efficiency is improved from 1.90% to 4.09%.
    The mechanism is due to the interfacial dipole and hydrophobicity generating by fluorine-modified PEDOT:PSS layer. Moreover, the reliability of the devices with modification shows significant increase than those without modification. The efficiency of the modified devices retains about half (1.9%) of its initial efficiency (4.1%) after 30 days compared to the unmodified one (0.6%). This phenomenon is investigated and reported for the first time. Furthermore, the overall device performance is also enhanced by ~20% as compared with the control device.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-1-1世界能源與太陽能 1 1-1-2太陽能電池發展 2 1-1-3有機太陽能電池發展 3 1-2 研究目的 8 第二章 相關文獻與理論 9 2-1 太陽能電池基本原理 9 2-2 太陽能電池基本因子 13 2-3 自組裝單分子薄膜 15 第三章 實驗流程與儀器設備 19 3-1 材料介紹 19 3-2 高分子太陽能電池製作流程 24 3-2-1 元件結構 24 3-2-2 ITO基板蝕刻圖像化 25 3-2-3 元件組裝流程 27 3-3 實驗儀器介紹 29 3-3-1 紫外光/可見光光譜儀 (UV-Vis spectroscopy) 29 3-3-2 光電I-V特性量測 30 3-3-3 原子力顯微鏡 (Atomic force microscopy) 30 3-3-5 X光光電子能譜儀 (X-ray photoelectron spectroscopy) 33 3-3-6 紫外光電子能譜儀 (Ultraviolet photoelectron spectroscopy) 35 第四章 實驗設計與結果討論 36 4-1 實驗設計 36 4-2 PEDOT:PSS存放環境濕度對元件效率影響 36 4-3 不同結構含氟分子元件效率探討 38 4-4 溶劑及熱處理效應對元件的影響 40 4-5 含氟分子修飾前後PEDOT:PSS表面形貌 45 4-6 PEDOT:PSS修飾前後接觸角變化 48 4-7 PEDOT:PSS修飾前後XPS分析 50 4-8 PEDOT:PSS修飾前後UPS分析 53 4-9 PEDOT:PSS修飾前後AC2分析 56 4-10含氟修飾分子元件最佳化(optimization) 57 4-11含氟分子修飾後元件耐久度之影響 60 4-12含氟分子修飾元件效率降低之原因 62 第五章 結論 64 參考文獻 65

    1. D. M. Chapin, C.S. Fuller, and G. L. Pearson, J. Appl. Phys. 25, 676 (1954)
    2. Jianhua Zhao, Aihua Wang, Martin A. Green, and Francesca Ferrazza, Appl. Phys. Lett. 73, 1991 (1998)
    3. Schultz O, Glunz SW, Willeke GP, Progress in Photovoltaics: Research and Applications 12, 553 (2004)
    4. D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976)
    5. K. Sriprapa and P. Sichanugrist, Photovoltaic Energy Conversion, Proceedings of 3rd World Conference on Volume 3, 2799 (2003)
    6. Wu X, Keane JC, Dhere RG, DeHart C, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P. Proceedings of17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October, 995 (2001)
    7. The website of Nanosolar company, http://www.nanosolar.com
    8. Teodor K. Todorov, Kathleen B. Reuter, and David B. Mitzi, Adv. Mater. 22, E156–E159 (2010)
    9. B. O’Regan and M. Grätzel, Nature 353, 737 (1911)
    10. V. Y. Merritt and H. J. Hovel, Appl. Phys. Lett. 29, 414 (1976)
    11. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986)
    12. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79,126 (2001)
    13. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Science 258, 1474 (1992)
    14. G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, Science 270, 1789 (1995)
    15. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001)
    16. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002)

    17. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv.Funct. Mater. 13, 85 (2003)
    18. Jae Hyun Lee, Dae Woo Kim, Hong Jang, Jong Kil Choi, Jianxin Geng, Jae Wook Jung, Sung Cheol Yoon, and Hee-Tae Jung, small 5, 2139 (2009)
    19. Chin-Wei Liang, 1 Wei-Fang Su, 1,2 and Leeyih Wang, Appl. Phys. Lett. 95, 133303 (2009)
    20. Zheng Xu, Li-Min Chen, Guanwen Yang, Chun-Hao Huang, Jianhui Hou, Yue Wu, Gang Li, Chain-Shu Hsu, and Yang Yang, Adv. Funct. Mater. 19, 1227 (2009)
    21. K. Topp, H. Borchert, F. Johnen, A. V. Tunc, M. Knipper, E. von Hauff, J. Parisi, and K. Al-Shamery, J. Phys. Chem. A 114, 3981 (2010)
    22. Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tom Moriarty, Keith Emery and Yang Yang, Nature Materials 4, 864 (2005)
    23. Ching Lin, En-Yung Lin, and Feng-Yu Tsai, Adv. Funct. Mater. 20, 834 (2010)
    24. Hsiang-Yu Chen, Jianhui Hou, Shaoqing Zhang, Yongye Liang, Guanwen Yang, Yang Yang, Luping Yu, Yue Wu and Gang Li, Nature Photonics 3, 649 (2009)
    25. Nieves Espinosa, Rafael García-Valverde, Antonio Urbina, Frederik C. Krebs, Solar Energy Materials and Solar Cells 95, 1293 (2011)
    26. Frederik C. Krebs, Roar Søndergaard, Mikkel Jørgensen, Solar Energy Materials and Solar Cells 95, 1348(2011)
    27. M. C. Sxharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006)
    28. L. J. A. Koster, V. D. Mihailetchi, and P. W. Blom, Appl. Phys. Lett. 88, 093511 (2006)

    29. Kenji Kawano, Roberto Pacios, Dmitry Poplavskyy, Jenny Nelson, Donal D.C. Bradley, James R. Durrant, Solar Energy Materials and Solar Cells 90, 3520 (2006)
    30. Ankit Kumar, Srinivas Sista, and Yang Yang, J. Appl. Phys. 105, 094512 (2009)
    31. Peter Peumans, Aharon Yakimov, and Stephen R. Forrest, J. Appl. Phys. 93, 3693 (2003)
    32. Bigelow, W. C., Pickett, D. L., Zisman, W. A., Collid Interface Sci. 1, 513 (1946)
    33. Jacob Sagiv, J. Am. Chem. Soc. 102, 92 (1980)
    34. Ulamn, A.,“An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-assembly”Academic Press: Boston (1991)
    35. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, & D. M. de Leeuw, Nature 401, 685 (1999)
    36. Hans Gommans, Bregt Verreet, Barry P. Rand, Robert Muller, Jef Poortmans, Paul Heremans, and Jan Genoe, Adv. Funct. Mater. 18, 3686 (2008)
    37. M. Vogel, S. Doka, Ch. Breyer, M. Ch. Lux-Steiner, and K. Fostiropoulos, Appl. Phys. Lett. 89, 163501 (2006)
    38. Ching-Chun Chang, Chi-Feng Lin, Jian-Ming Chiou, Tzung-Han Ho, Yian Tai, Jiun-Haw Lee, Yang-Fang Chen, Juen-Kai Wang, Li-Chyong Chen, and Kuei-Hsien Chen, Appl. Phys. Lett. 96, 263506 (2010)
    39. Sagit Shalel-Levanona and Abraham Marmur, Journal of Colloid and Interface Science 262, 489 (2003)
    40. Xavier Bulliard, Soo-Ghang Ihn , Sungyoung Yun, Yungi Kim, Dukhyun Choi, Jae-Young Choi, Min Kim, Myungsun Sim, Jong-Hwan Park, Woong Choi, and Kilwon Cho, Adv. Funct. Mater. 20, 4381 (2010)
    41. Tae-Woo Lee, Youngsu Chung, Ohyun Kwon, and Jong-Jin Park, Adv. Funct. Mater. 17, 390 (2007)
    42. Baohua Zhang, Wenmu Li, Junwei Yang, Yingying Fu, Zhiyuan Xie, Suobo Zhang, and Lixiang Wang, J. Phys. Chem. C 113, 7898 (2009)
    43. Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, Kazuhiko Seki, Adv. Mater. 11, 605 (1999)
    44. Bonan Kang, L. W. Tan, and S. R. P. Silva, Appl. Phys. Lett. 93, 133302 (2008)
    45. Daniel Rauh, Alexander Wagenpfahl, Carsten Deibel, and Vladimir Dyakonov, Appl. Phys. Lett. 98, 133301 (2011)
    46. R. Marcilla, E. Ochoteco, C. Pozo-Gonzalo, H. Grande, J. A. Pomposo and D. Mecerreyes, Macromol. Rapid Commun. 26, 1122 (2005)
    47. C. Pozo-Gonzalo, R. Marcilla, M. Salsamendi, D. Mecerreyes, J. A. Pomposo, J. Rodrı´guez and H. J. Bolink, J. Polym. Sci., Part A: Polym. Chem. 46, 3150 (2008)
    48. Markus Döbbelin, Rebeca Marcilla, Christopher Tollan, José A. Pomposo, Jose-Ramon Sarasua and David Mecerreyes, J. Mater. Chem. 18, 5354 (2008)
    49. Shun-Wei Liu, Chih-Chien Lee, Chi-Feng Lin, Jia-Cing Huang, Chin-Ti Chen, and Jiun-Haw Lee, J. Mater. Chem. 20, 7800 (2010)

    下載圖示
    QR CODE