簡易檢索 / 詳目顯示

研究生: 黃梓瑋
論文名稱: 低溫接收線圈應用於低磁場核磁共振系統之改良與特性研究
The Research of Receive and Improvement Coil in Low Temperature by Using Low-Field NMR System
指導教授: 楊鴻昌
Yang, Hong-Chang
洪姮娥
Horng, Herng-Er
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 59
中文關鍵詞: 低磁場低溫可攜帶式
論文種類: 學術論文
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究架設一個杜瓦瓶冷卻系統,將接收線圈放入杜瓦瓶中的真空夾層中。當液態氮灌入杜瓦瓶時,可透過杜瓦瓶內的藍寶石管,使真空夾層內的接收線圈降溫,以降低接收線圈的熱雜訊,進而提升樣品核磁共振的訊雜比。在本實驗中,應用本系統可使線圈熱雜訊降低四分之ㄧ,有效提高核磁共振實驗的訊雜比。
    為了將低場核磁共振研究拓展至臨床應用,在台大醫院架設了一套核磁共振系統,以期能進行臨床實驗。但由於醫院的電磁雜訊極大,會干擾本系統的工作,因此利用碳纖維布包覆訊號線來屏蔽雜訊,降低醫院中環境雜訊的干擾。此外並應用3個方向的梯度磁場補償環境磁場的不均勻情形,使得系統可穩定在台大醫院進行樣品檢測。透過上述的改進方式,初步測量5 毫升的水樣品,可使線寬從10.74 Hz降至1.3 Hz,並大幅提升訊雜比由10.42提升至24.1。未來將進一步應用於生物組織檢體之臨床檢測。

    摘要 i 致謝 ii 目錄 iii 第一章 緒論……………………………………………………………1 第二章 實驗原理………………………………………………………2 2-1低磁場核磁共振原理簡介…………………………………………2 2-1.1核磁共振原理……………………………………………………2 2-1.2 縱向鬆弛與橫向鬆弛……………………………………………8 2-1.3 自由感應衰減……………………………………………………10 第三章 系統架構與流程………………………………………………12 3-1系統架構與流程……………………………………………………12 3-2低磁場核磁共振系統………………………………………………14 3-2.1系統屏蔽使用……………………………………………………14 3-2.2靜磁場線圈與梯度線圈…………………………………………18 3-2.3地球磁場補償線圈(BC) …………………………………………20 3-3杜瓦瓶設計…………………………………………………………22 第四章 實驗過程與結果………………………………………………28 4-1 設計杜瓦瓶前..……………………………………………………28 4-2測試杜瓦瓶真空度…………………………………………………31 4-3接收線圈最佳圈數…………………………………………………32 4-4測試藍寶石(氧化鋁)導熱度………………………………………34 4-5進行量測SNR實驗…………………………………………………39 第五章 應用……………………………………………………………42 5-1 應用介紹…………………………………………………………42 5-2 使SQUID穩定工作………………………………………………43 5-3 Gx,Gy線圈設計,梯度磁場校正………………………………46 5-3.1 Gx,Gy線圈設計…………………………………………………46 5-3.2梯度磁場校正……………………………………………………47 5-4 更換接收線圈,輸入小電流與大電流……………………………49 5-4.1更換接收線圈……………………………………………………49 5-4.2 輸入小電流(I=2.5A,Bp=810gauss) 與大電流(I=5.5A,Bp=1782 gauss)…………………………………………………………………50 5-5 接收線圈最佳圈數,接收線圈比較………………………………53 5-5.1接收線圈最佳圈數………………………………………………53 5-5.2接收線圈比較(內徑12mm與內徑8mm)………………………54 第六章 討論與結論……………………………………………………57 參考文獻………………………………………………………………58

    [1] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson,“Hyperpolarization of 13C through order transfer from parahydrogen:A new contrast agent for MRI “, Magn.Reson. Imaging 23,153 (2005) .
    [2] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,”Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [3] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis,A.R.Young, W. Happer, ”Theory of spin-exchange optical pumping of 3He and 129Xe “,Phys. Rev. A 58, 1412 (1998).
    [4] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [5] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [6] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines , “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A,108, 957-963 (2004).
    [7] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke,“Microtesla MRI with a superconducting quantum interference Device”, Proc.Natl. Acad. Sci. USA , 101, 7857 (2004).
    [8] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke,“SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA..
    [9] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich,“Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem.Phys. Lett. 348, 263(2001)
    [10] Hong-Chang Yang, Shu-Hsien Liao and Herng-Er Horng, and Shing-Ling Kuo, Hsin-Hsien Chen, and Shieh-Yueh Yang, “Enhancement of nuclear magnetic resonance in microtesla magneticfield with prepolarization field detected with high-Tc superconducting quantum interference device”, Appl. Phys. Lett. 88,252505 (2006)
    [11] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [12] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [13] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [14] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [15] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87,054103 (2005)
    [16] M A Bernstein, K F King and X J Zhou. Handbook of MRI Pulse Sequences. Elsevier Academic Press, 960 (2004)
    [17] Longqing Qiu1, Yi Zhang, Hans-Joachim Krause, Alex I. Braginski and Andreas Offenhäusser,” Low-field NMR Measurement Procedure when SQUID Detection is Used” [21] M A Bernstein, K F King and X J Zhou. Handbook of MRI Pulse Sequences. Elsevier Academic Press, 960 (2004)
    [18] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [19] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [20] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87,054103 (2005)
    [21] Longqing Qiu1, Yi Zhang, Hans-Joachim Krause, Alex I. Braginski and Andreas Offenhäusser,” Low-field NMR Measurement Procedure when SQUID Detection is Used”

    無法下載圖示 本全文未授權公開
    QR CODE