研究生: |
陳筱鳳 Chen, Hsiao-Feng |
---|---|
論文名稱: |
路易斯酸輔佐側鏈烯-,炔-,和呋喃-炔醯胺衍生物的分子內環化反應:2-胺基萘環、螺旋γ-內醯胺與三取代吡咯化合物的合成 Lewis Acid-Promoted Intramolecular Cyclization Reactions of Ene-, Yne-, and Furan-Tethered Ynamides: Synthesis of 2-Aminonaphthalenes, Spiro γ-Lactams, and Trisubstituted Pyrrole Derivatives |
指導教授: |
葉名倉
Yeh, Ming-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 528 |
中文關鍵詞: | 炔醯胺 、銦(III) 、萘 、炔-炔醯胺 、二氯亞鐵 、螺旋γ-內醯胺 、呋喃-炔醯胺 、氯金酸鈉 、吡咯 |
英文關鍵詞: | ynamide, indium(III), naphthalene, yne-ynamide, iron(II) chloride, spiro γ-lactam, furan-ynamide, NaAuCl4, pyrrole |
DOI URL: | http://doi.org/10.6345/NTNU201900449 |
論文種類: | 學術論文 |
相關次數: | 點閱:112 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討三個主題,依序利用路易斯酸輔佐分子內環化芳香1,5-烯炔醯胺、五員環N-丙炔基-N-1-炔醯胺,和呋喃炔醯胺化合物,分別合成出2-胺基萘、螺旋γ-內醯胺,與三取代吡咯衍生物。
(1) 利用三氟甲磺酸銦催化劑,可有效的使鄰位帶有烯烴的芳香N-甲基-N-甲苯磺醯基炔醯胺化合物,合成出2-胺基萘衍生物。高效率的合成、溫和的反應條件,以及符合原子經濟效應皆為此反應的優勢。此外,也可利用sodium naphtalenide於四氫呋喃溶液中,成功將氮上的甲苯磺醯基去保護,得到二級胺萘衍生物。
(2) 以二氯亞鐵試劑輔佐五員環N-丙炔基-N-1-炔醯胺化合物,於四氫呋喃溶劑且乾燥空氣的條件下,進行分子內環化可生成氯加成的螺旋γ-內醯胺衍生物。二氯亞鐵活化N-丙炔基-N-1-炔醯胺,會先形成keteniminium ion中間體(I),氯陰離子加成至keteniminium ion碳中心得到中間體(II),另一個氯陰離子由同側加成至炔基,水解後可得螺旋γ-內醯胺衍生物。
(3) 利用金(III)催化呋喃炔醯胺化合物可有效合成2,3,4-三取代吡咯衍生物。以5 mol%氯金酸鈉作為反應催化劑,於溫和的條件下進行環化反應,即可得到高產率吡咯環化產物。其中值得一提的是,呋喃-炔醯胺化合物經金(III)催化,可促使呋喃開環來進行環化反應。而吡咯衍生物3號位帶有共軛烯醛取代,可藉由反應溫度的不同,個別分離出(Z)-或(E)-組態產物。
This thesis covers three topics. Lewis acid-promoted intramolecular cyclization reactions of aromatic 1,5-enynamides, five-membered ring N-propargyl-N-1-ynylamides, and furan-tetherted ynamides yielding 2-aminonaphthalenes, spiro γ-lactams, and trisubstituted pyrrole derivatives, respectivety.
(1) Indium triflate enabled the efficient synthesis of 2-aminonaphthalenes from aromatic N-methyl-N-tosyl-ynamides bearing an ortho-vinyl group. The reaction featured high efficiency, mild reaction conditions, as well as atom economy. Furthermore, the deprotection of the N-tosyl group with sodium naphtalenide in tetrahydrofuran provided the corresponding free amino napathalene derivatives.
(2) The FeClR2R-promoted intramolecular cyclization of five-membered ring N-propargyl-N-1-ynylamides in tetrahydrofuran under dry air afforded chlorinated spiro γ-lactams. Activation of the N-propargyl-N-1-ynylamides with FeClR2R gave the keteniminium ion (I), which was attacked by chloride anion to afforded intermediate (II). Syn-addition of the chloride and the olefin moiety to the pendant alkyne of II generated the spiro γ-lactams.
(3) An efficient gold(III)-catalyzed formation of 2,3,4-trisubstituted pyrrole derivatives from furan-tethered ynamides is reported. The transformation was under mild reaction conditions and in good yield using 5 mol% NaAuClR4R as the catalyst. It worthly noted that gold(III)-catalyzed furan-ynamide cyclization proceeded through ring-opening of furan. And the pyrrole deivatives had a propenal side chain at C3 position, the isolation of (Z)- or (E)- configuration were both viable by different reaction temperature.
1. Teponno, R. B.; Kusari, S.; Spiteller, M. Nat. Prod. Rep. 2016, 33, 1044.
2. Navaratne, P. V.; Grenning, A. J. Org. Biomol. Chem. 2017, 15, 69.
3. Zhang, J.-J.; Yan, C.-S.; Peng, Y.; Luo, Z.-B.; Xu, X.-B.; Wang, Y.-W. Org. Biomol. Chem. 2013, 11, 2498.
4. Harrowven, D. C.; Bradley, M.; Lois Castro, J.; Flanagan, S. R. Tetrahedron Lett. 2001, 42, 6973.
5. Nono, E. C. N.; Mkounga, P.; Kuete, V.; Marat, K.; Hultin, P. G.; Nkengfack, A. E. J. Nat. Prod. 2010, 73, 213.
6. Hemmati, S.; Seradj, H. Molecules 2016, 21, 820.
7. Trinh, P. T. N.; Luan, N. Q.; Tri, M. D.; Khanh, V. D.; An, N. H.; Minh, P. N.; An, P. N.; Thuy, N. T. L.; Phung, N. K. P.; Dung, L. T. Nat. Prod. Res. 2017, 31, 1733.
8. Ribeiro, A. C.; Rocha, Â.; Soares, R. M. D.; Fonseca, L. P.; da Silveira, N. P. Carbohydr. Polym. 2017, 157, 267.
9. Li, J. C.; Li, G. P.; Yang, J. H.; Dai, Y.; Duan, Y. X.; Zhang, J. S. Asian J. Chem. 2012, 24, 2815.
10. Kikuchi, T.; Nishinaga, T.; Inagaki, M.; Niwa, M.; Kuriyama, K. Chem. Pharm. Bull. 1975, 23, 416.
11. Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517.
12. Gupton, J. T. Top. Heterocycl. Chem. 2006, 2, 53.
13. Imbri, D.; Tauber, J.; Opatz, T. Mar. Drugs 2014, 12, 6142.
14. Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
15. Plisson, F.; Conte, M.; Khalil, Z.; Huang, X.-C.; Piggott, A. M.; Capon, R. J. ChemMedChem 2012, 7, 983.
16. Palermo, J. A.; Brasco, M. F. R.; Seldes, A. M. Tetrahedron 1996, 52, 2727.
17. Liu, H.; Ma, L.; Zhou, R.; Chen, X.; Fang, W.; Wu, J. ACS Catal. 2018, 8, 6224.
18. DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
19. Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
20. Lu, T.; Hsung, R. P. Arkivoc 2014, i, 127.
21. Rischmann, M.; Mues, R.; Geiger, H.; Laas, H. J.; Eicher, T. Phytochemistry 1989, 28, 867.
22. Zhang, C.; Chen, L.; Chen, K.; Jiang, H.; Zhu, S. Org. Chem. Front. 2018, 5, 1028.
23. Karunakaran, J.; Mohanakrishnan, A. K. Org. Lett. 2018, 20, 966.
24. Chen, M.; Su, N.; Deng, T.; Wink, D. J.; Zhao, Y.; Driver, T. G. Org. Lett. 2019, 21, 1555.
25. Wu, F.; Zhu, S. Org. Lett. 2019, 21, 1488.
26. Chen, Z.; Zeng, W.; Jiang, H.; Liu, L. Org. Lett. 2012, 14, 5385.
27. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113.
28. Willumstad, T. P.; Haze, O.; Mak, X. Y.; Lam, T. Y.; Wang, Y. P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 11450.
29. Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825.
30. Fuchibe, K.; Mayumi, Y.; Yokota, M.; Aihara, H.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2014, 87, 942.
31. Selvi, T.; Velmathi, S. J. Org. Chem. 2018, 83, 4087.
32. Alonso-Marañón, L.; Martínez, M. M.; Sarandeses, L. A.; Gómez-Bengoa, E.; Sestelo, J. P. J. Org. Chem. 2018, 83, 7970.
33. Thombal, R. S.; Lee, Y. R. Org. Lett. 2018, 20, 4681.
34. Yeh, M.-C. P.; Lin, H.-H.; Kuo, S.-F.; Chen, P.-J.; Hong, J.-W. Adv. Synth. Catal. 2014, 356, 3816.
35. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911.
36. Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. Chem. Commun. 2013, 49, 11320.
37. Zall, A.; Bensinger, D.; Schmidt, B. Eur. J. Org. Chem. 2012, 2012, 1439.
38. Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
39. Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A.; Bank, S.; Closson, W. D. J. Am. Chem. Soc. 1967, 89, 5311.
40. Garcia, P.; Harrak, Y.; Diab, L.; Cordier, P.; Ollivier, C.; Gandon, V.; Malacria, M.; Fensterbank, L.; Aubert, C. Org. Lett. 2011, 13, 2952.
41. Wei, D.; Netkaew, C.; Darcel, C. Adv. Synth. Catal. 2019, 361, 1781.
42. Sun, L.; Liu, P.; Wang, J.; Lu, P.; Wang, Y. J. Org. Chem. 2017, 82, 8407.
43. Caruano, J.; Muccioli, G. G.; Robiette, R. Org. Biomol. Chem. 2016, 14, 10134.
44. Li, Z.; Sharma, U. K.; Liu, Z.; Sharma, N.; Harvey, J. N.; Van der Eycken, E. V. Eur. J. Org. Chem. 2015, 2015, 3957.
45. Marin, L.; Force, G.; Guillot, R.; Gandon, V.; Schulz, E.; Leboeuf, D. Chem. Commun. 2019, 55, 5443.
46. Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. Tetrahedron 2003, 59, 3369.
47. Lachia, M.; Richard, F.; Bigler, R.; Kolleth-Krieger, A.; Dieckmann, M.; Lumbroso, A.; Karadeniz, U.; Catak, S.; De Mesmaeker, A. Tetrahedron Lett. 2018, 59, 1896.
48. Panchaud, P.; Ollivier, C.; Renaud, P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755.
49. Ding, Q.; He, H.; Cai, Q. Org. Lett. 2018, 20, 4554.
50. Bertus, P.; Menant, C.; Tanguy, C.; Szymoniak, J. Org. Lett. 2008, 10, 777.
51. Prabagar, B.; Nayak, S.; Prasad, R.; Sahoo, A. K. Org. Lett. 2016, 18, 3066.
52. Wang, C.-S.; Roisnel, T.; Dixneuf, P. H.; Soulé, J.-F. Adv. Synth. Catal. 2019, 361, 445.
53. Chen, J.-Q.; Chang, R.; Lin, J.-B.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2018, 20, 2395.
54. Yeh, M.-C. P.; Shiue, Y.-S.; Lin, H.-H.; Yu, T.-Y.; Hu, T.-C.; Hong, J.-J. Org. Lett. 2016, 18, 2407.
55. Lin, H.-H.; Chiang, T.-C.; Wu, R.-X.; Chang, Y.-M.; Wang, H.-W.; Liu, S.-T.; Yeh, M.-C. P. Adv. Synth. Catal. 2019, 361, 1277.
56. 張依湄碩士論文, 國立臺灣師範大學化學所, 2017.
57. Rayner, P. J.; O'Brien, P.; Horan, R. A. J. Am. Chem. Soc. 2013, 135, 8071.
58. Ruano, J. L. G.; Alemán, J.; Cid, M. B.; Parra, A. Org. Lett. 2005, 7, 179.
59. Xu, H.-C.; Chowdhury, S.; Ellman, J. A. Nat. Protoc. 2013, 8, 2271.
60. Al-huniti, M. H.; Lepore, S. D. Org. Lett. 2014, 16, 4154.
61. Wu, X.; Zhao, P.; Geng, X.; Wang, C.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2018, 20, 688.
62. Ma, X.; Liu, L.; Wang, J.; Xi, X.; Xie, X.; Wang, H. J. Org. Chem. 2018, 83, 14518.
63. Yang, J.; Zhou, X.; Zeng, Y.; Huang, C.; Xiao, Y.; Zhang, J. Chem. Commun. 2016, 52, 4922.
64. Leonardi, M.; Estévez, V.; Villacampa, M.; Menéndez, J. C. Adv. Synth. Catal. 2019, 361, 2054.
65. Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
66. Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Chem.–Eur. J. 2008, 14, 6672.
67. Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.
68. Hashmi, A. S. K.; Pankajakshan, S.; Rudolph, M.; Enns, E.; Bander, T.; Rominger, F.; Frey, W. Adv. Synth. Catal. 2009, 351, 2855.
69. Du, X.; Yu, J.; Gong, J.; Zaman, M.; Pereshivko, O. P.; Peshkov, V. A. Eur. J. Org. Chem. 2019, 2019, 2502.
70. Yang, Y.; Fei, C.; Wang, K.; Liu, B.; Jiang, D.; Yin, B. Org. Lett. 2018, 20, 2273.
71. Zhang, X.; Xu, X.; Chen, G.; Yi, W. Org. Lett. 2016, 18, 4864.
72. Peng, H.; Li, J.; Wang, F.; Liu, B.; Yin, B. J. Org. Chem. 2016, 81, 4939.
73. Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Org. Lett. 2018, 20, 3806.
74. Li, M.-B.; Grape, E. S.; Bäckvall, J.-E. ACS Catal. 2019, 9, 5184.
75. Arcadi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Tetrahedron: Asymmetry 2001, 12, 2715.
76. Shu, X.-Z.; Liu, X.-Y.; Ji, K.-G.; Xiao, H.-Q.; Liang, Y.-M. Chem.–Eur. J. 2008, 14, 5282.
77. Kim, K.; Jung, J.; Heo, H. G.; Oh, C. H. Bull. Korean Chem. Soc. 2017, 38, 845.
78. 林冠碩碩士論文, 國立臺灣師範大學化學所, 2018.
79. Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.
80. Dekamin, M. G.; Karimi, Z. J. Organomet. Chem. 2009, 694, 1789.
81. Hertenstein, U.; Hünig, S.; Öller, M. Chem. Ber. 1980, 113, 3783.
82. Takahashi, Y.; Fuwa, H.; Kaneko, A.; Sasaki, M.; Yokoshima, S.; Koizumi, H.; Takebe, T.; Kan, T.; Iwatsubo, T.; Tomita, T.; Natsugari, H.; Fukuyama, T. Bioorg. Med. Chem. Lett. 2006, 16, 3813.
83. Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
84. Go, T.; Morimatsu, A.; Wasada, H.; Tanabe, G.; Muraoka, O.; Sawada, Y.; Yoshimatsu, M. Beilstein. J. Org. Chem. 2018, 14, 2722.
85. Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474.
86. Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. Angew. Chem., Int. Ed. 2016, 55, 12688.
87. Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 16549.