研究生: |
吳念恆 Wu, Nien-Heng |
---|---|
論文名稱: |
應用構詞語法於中文評論之情感分析 Sentiment Analysis of Chinese Reviews Using Morphosyntactic Patterns |
指導教授: |
陳正賢
Chen, Cheng-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
英語學系 Department of English |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 情感分析 、情感分類 、構詞語法 、電影評論 |
英文關鍵詞: | Sentiment Analysis, sentiment classification, morphosyntactic patterns, online movie reviews |
DOI URL: | http://doi.org/10.6345/NTNU202100009 |
論文種類: | 學術論文 |
相關次數: | 點閱:369 下載:59 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
情感分析是自然語言處理領域最常討論的主題之一。情感分類經常使用詞袋模型(bag-of-words model)搭配n元語法(n-gram)建立分類模型,過去研究亦顯示,採用語法特徵和篇章特徵等非詞袋特徵,也能為分類效能帶來重要貢獻。本研究旨在分析透過語言學知識集成之構詞語法在中文電影評論中對於情感詞極度之影響,並探討其應用是否能夠有效提升文本情感分類效能。本研究先利用模式文法(pattern grammar),以質化角度歸納出情感相關句構組合,再利用雙樣本中位數差異檢定(Wilcoxon rank-sum test),以量化角度檢測句構對於情感詞極度之影響,從而識別句構對於情感詞調節之偏好。
研究結果發現,句構組合具有兩種情感調節偏好:增強正向情感詞之情感極度,以及削弱負向情感詞之情感極度。後續的詞彙連接分析(collexeme analysis)也顯示,增強情感極度之句構普遍吸引正向情感詞,而削弱情感極度之句構則吸引負向情感詞較為顯著。這些差異反映中文母語使用者在電影評論中,如何調節個人意見之情感極度,以進一步建立評論可信度。本研究最後採用支持向量機(Support Vector Machines)建立分類模型,並透過兩個文本情感分類實驗,在與傳統詞袋模型比較下,驗證情感相關句構組合之分類效能。在實驗(一)中,我們檢測結合語言學知識集成之情感句構,相較於包涵情感詞之傳統n元語法,是否能夠涵蓋較全面的情感相關語法信息。在實驗(二)中,我們驗證情感句構是否有助於提升傳統詞袋模型之分類效能。實驗(一)結果顯示,與包涵情感詞之傳統n元語法相比,情感句構能夠涵蓋更廣的情感詞語法特性,且能夠更有效率地編碼重要情感相關語法信息。實驗(二)也證實,當n元語法和情感詞納入分類模型時,情感句構的加入,能夠提升傳統詞袋模型之分類效能,分類表現更可達到F1指標87.80%。本研究透過語言學知識集成之構詞語法,可在普遍用於情感分類模型的暴力演算法以外,提供另一個建立分類模型之方法。
Sentiment analysis is one of the most commonly discussed topics in the field of Natural Language Processing. While the traditional bag-of-words approach using n-grams is generally adopted for the sentiment analysis tasks like sentiment classification, studies have suggested that features beyond bags-of-word, such as grammatical and textual features, are crucial to the classifier’s performance. In particular, this study investigates to what extent linguistically-motivated morphosyntactic patterns may contribute to the sentiment classification through analyzing their impacts on the sentiment polarity of lexical features such as sentiment words in Chinse online movie reviews. We adopt pattern grammar as our theoretical framework to qualitatively encode patterns and the Wilcoxon rank-sum test to quantitatively determine significant patterns and their sentiment preferences.
Our analyses show that morphosyntactic patterns demonstrate two prominent sentiment modulation of lexical sentiment polarity: intensifying the positive lexical sentiment or mitigating the negative lexical sentiment. Our post-hoc collexeme analyses of these patterns also show that sentiment-intensifying patterns attract more positive words and that sentiment-mitigating patterns attract more negative words. These preferences reveal how Chinese speakers utilize morphosyntactic patterns to modulate the sentiment in their opinions and establish their credibility in online movies reviews. Finally, we train a series of Support Vector Machines models and perform two document classification experiments to validate the effectiveness of morphosyntactic patterns in comparison to the traditional bag-of-words models. In the first experiment, we examine whether our linguistically-motivated morphosyntactic patterns could capture comparable amount of the beyond-single-word information as opposed to the sentiment-word-embedded n-grams, which are traditional n-grams that specifically contain sentiment words. In the second experiment, we test if sentiment-modulating morphosyntactic patterns do contribute to sentiment classification on top of the traditional n-gram-based model. Results of the first experiment suggest that morphosyntactic patterns can encode a wider range of the crucial morphosyntactic properties of sentiment words more efficiently than sentiment-word-embedded n-grams. The second experiment shows that morphosyntactic patterns improved the traditional n-gram-based model comprising unigrams and bigrams. Moreover, we obtained an averaged F1 score of 87.80 when considering morphosyntactic patterns with other features such as n-grams and sentiment words in the classifier. We conclude that the handcrafted, linguistically-motivated morphosyntactic patterns can provide an alternative to the brutal n-gram methods that have been commonly employed in building classifiers for sentiment classification tasks.
Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Information Processing & Management, 56(4), 1245–1259. doi: 10.1016/j.ipm.2019.02.018.
Agarwal, B., & Mittal, N. (2016). Prominent feature extraction for review analysis: An empirical study. Journal of Experimental & Theoretical Artificial Intelligence, 28(3), 485–498. doi: 10.1080/0952813X.2014.977830.
Agarwal, B., Sharma, V. K., & Mittal, N. (2013). Sentiment classification of review documents using phrase patterns. Proceedings of the 3rd International Conference on Advances in Computing, Communications and Informatics, 1577–1580. doi: 10.1109/ICACCI.2013.6637415.
Ahmad, K., Cheng, D., Taskaya, T., Ahmad, S., Gillam, L., Pensiri, P., Traboulsi, H., & Hippisley, A. (2006). The mood of the (financial) markets: In a corpus of words and of pictures. Corpus linguistics around the world, 17–32. doi: 10.1163/9789401202213_003.
Athanasiadou, A. (2007). On the subjectivity of intensifiers. Language Sciences, 29(4), 554–565. doi: 10.1016/j.langsci.2007.01.009.
Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. Proceedings of the 7th Conference on International Language Resources and Evaluation, 2200–2204. Retrieved from http://www.lrec-conf.org/proceedings/lrec2010/.
Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet Project. Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, 1, 86–90. doi: 10.3115/980845.980860.
Ballmer, T. T., & Brennenstuhl, W. (1981). Speech act classification: A study in the lexical analysis of English speech activity verbs. New York: Springer-Verlag.
Benamara, F., Chardon, B., Mathieu, Y., Popescu, V., & Asher, N. (2012). How do negation and modality impact opinions? Proceedings of the Workshop on Extra-Propositional Aspects of Meaning in Computational Linguistics, 10–18. Retrieved from https://www.aclweb.org/anthology/W12-38.pdf.
Benamara, F., Taboada, M., & Mathieu, Y. (2017). Evaluative language beyond bags of words: Linguistic insights and computational applications. Computational Linguistics, 43(1), 201–264. doi: 10.1162/COLI_a_00278
Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3(30), 774–777. doi: 10.21105/joss.00774.
Biber, D., Conrad, S., & Cortes, V. (2004). If you look at…: Lexical bundles in university teaching and textbooks. Applied Linguistics, 25(3), 371–405. doi: 10.1093/applin/25.3.371.
Biber, D., & Finegan, E. (1989). Styles of stance in English: Lexical and grammatical marking of evidentiality and affect. Text, 9(1), 93–124. doi: 10.1515/text.1.1989.9.1.93.
Blum-Kulka, S., House, J., & Kasper, G. (Eds.). (1989). Cross cultural pragmatics: Requests and apologies. Norwood, NJ: Ablex.
Boucher, J., & Osgood, C. E. (1969). The Pollyanna hypothesis. Journal of Verbal Learning and Verbal Behavior, 8, 1–8. doi: 10.1016/s0022-5371(69)80002-2.
Brooke, J., Tofiloski, M., & Taboada, M. (2009). Cross-linguistic sentiment analysis: From English to Spanish. Paper presented at the 7th International Conference on Recent Advances in Natural Language Processing, Borovets, Bulgaria. Retrieved from https://www.aclweb.org/anthology/R09-1010.pdf.
Brynjolfsson, E., & Smith, M. D. (2000). Frictionless commerce? A comparison of Internet and conventional retailers. Management Science, 46, 563–585. doi: 10.1287/mnsc.46.4.563.12061.
Caffi, C. (1999). On mitigation. Journal of Pragmatics, 31(7), 881–909. doi: 10.1016/S0378-2166(98)00098-8.
Chenlo, J. M., Hogenboom, A., & Losada, D. E. (2014). Rhetorical structure theory for polarity estimation: An experimental study. Data & Knowledge Engineering, 94, 135–147. doi: 10.1016/j.datak.2014.07.009.
Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43, 345–354. doi: 10.1509/jmkr.43.3.345.
Clear, J., Fox, G., Francis, G., Krishnamurthy, R., & Moon, R. (1996). COBUILD: The state of the art. International Journal of Corpus Linguistics, 1, 303–314. doi: 10.1075/ijcl.1.2.08cle.
Conrad, S., & Biber, D. (2000). Adverbial marking of stance in speech and writing. In S. Hunston & G. Thompson (Eds.), Evaluation in Text: Authorial Distance and the Construction of Discourse (pp. 56–73). Oxford: Oxford University Press.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Long and Short Papers), 1, 4171–4186. doi: 10.18653/v1/N19-1423.
Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. London: Sage Publications.
Francis, G., Hunston, S., & Manning, E. (1998). Collins Cobuild Grammar Patterns 2: Nouns and adjectives. London: HarperCollins.
Galavotti, L., Sebastiani, F., & Simi, M. (2000). Feature selection and negative evidence in automated text categorization. Paper presented at the 2nd Annual International Conference on Knowledge Discovery in Data. Retrieved from http://pages.di.unipi.it/turini/MURST/simi2.pdf.
Gao, K., Su, S., Li, D.-Y., Zhang, S.-S., & Wang, J. S. (2018). A sentiment analysis approach based on exploiting Chinese linguistic features and classification. International Journal of Modelling, Identification and Control, 29(3), 226–232. doi: 10.1504/IJMIC.2018.091238.
Giannakidou, A. (1998). Polarity sensitivity as (non)veridical dependency. Amsterdam and Philadelphia: John Benjamins.
Giannakidou, A. (2001). Varieties of polarity items and the (non)veridicality hypothesis. In T. van der Wouden (Ed.), Perspectives on Negation and Polarity Items (pp. 99–127). Amsterdam and Philadelphia: John Benjamins.
Gupta, S. L., & Baghel, A. S. (2018). Efficient feature extraction in sentiment classification for contrastive sentences. International Journal of Modern Education & Computer Science, 10(5), 54–62. doi: 10.5815/ijmecs.2018.05.07.
Halliday, M. A. K., & Hasan, R. (1976). Cohesion in English. London: Longman.
Hatzivassiloglou, V., & McKeown, K. (1997). Predicting the semantic orientation of adjectives. Paper presented at the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/P97-1023.pdf.
Heerschop, B., Goossen, F., Hogenboom, A., Frasincar, F., Kaymak, U., & de Jong, F. (2011). Polarity analysis of texts using discourse structure. Proceedings of the 20th Association for Computing Machinery International Conference on Information and Knowledge Management, 1061–1070. doi: 10.1145/2063576.2063730.
Hobbs, J. (1979). Coherence and coreference. Cognitive Science, 3(8), 67–90. doi: 10.1207/s15516709cog0301_4.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501. doi: 10.1016/j.neucom.2005.12.126.
Huang, S.-L., & Cheng, W.-C. (2015). Discovering Chinese sentence patterns for feature-based opinion summarization. Electronic Commerce Research and Applications, 14(6), 582–591. doi: 10.1016/j.elerap.2015.08.007.
Huang, T.-H., Chen, Y.-N., & Kong, L. (2015). ACBiMA: Advanced Chinese bi-character word morphological analyzer. Proceedings of the 8th SIGHAN Workshop on Chinese Language Processing, 26–31. doi: 10.18653/v1/W15-3105.
Huang, T.-H., Ku, L.-W., & Chen, H.-H. (2010). Predicting morphological types of Chinese bi-character words by machine learning approaches. Paper presented at the 7th International Conference on Language Resources and Evaluation, Valletta, Malta. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.8041&rep=rep1&type=pdf.
Hunston, S. (2010). Corpus approaches to evaluation: Phraseology and evaluative language. New York: Routledge.
Hunston, S., & Francis, G. (1999). Pattern Grammar: A corpus-driven approach to the lexical grammar of English (Vol. 4). Philadelphia, PA: John Benjamins Publishing.
Hunston, S., & Sinclair, J. (2000). A local grammar of evaluation. In S. Hunston & G. Thompson (Eds.), Evaluation in text: Authorial stance and the construction of discourse (pp. 75–100). Oxford: Oxford University Press.
Hunston, S., & Thompson, G. (2000). Evaluation in text: Authorial distance and the construction of discourse. Oxford: Oxford University Press.
Hyland, K., & Tse, P. (2005). Hooking the reader: A corpus study of evaluative that in abstracts. English for Specific Purposes, 24, 123–139. doi: 10.1016/j.esp.2004.02.002.
Joachims, T. (1999). Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods: Support vector learning. Cambridge, MA: MIT press.
Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modeling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 655–665. doi: 10.3115/v1/P14-1.
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab–An S4 package for kernel methods in R. Journal of Statistical Software, 11(9), 1–20. doi: 10.18637/jss.v011.i09.
Kennedy, A., & Inkpen, D. (2006). Sentiment classification of movie and product reviews using contextual valence shifters. Computational Intelligence, 22, 110–125. doi: 10.1111/j.1467-8640.2006.00277.x.
Kong, L., Li, C., Ge, J., Zhang, F., Feng, Y., Li, Z., & Luo, B. (2020). Leveraging multiple features for document sentiment classification. Information sciences, 518, 39–55. doi: 10.1016/j.ins.2020.01.012.
Ku, L.-W., Ho, H. W., & Chen, H.-H. (2009). Opinion mining and relationship discovery using CopeOpi opinion analysis system. Journal of the American Society for Information Science and Technology, 60(7), 1486–1503. doi: 10.1002/asi.21067.
Ku, L.-W., Huang, T.-H., & Chen, H.-H. (2010). Construction of a Chinese opinion treebank. Paper presented at the 7th International Conference on Language Resources and Evaluation, Valletta, Malta. Retrieved from http://lrec.elra.info/proceedings/lrec2010/pdf/242_Paper.pdf.
Ku, L.-W., Liang, Y.-T., & Chen, H.-H. (2006). Opinion extraction, summarization and tracking in news and blog corpora. Paper presented at the 2006 Association for the Advancement of Artificial Intelligence Spring Symposium, Menlo Park, CA. Retrieved from https://www.aaai.org/Papers/Symposia/Spring/2006/SS-06-03/SS06-03-020.pdf.
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. doi: 10.18637/jss.v028.i05.
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning, 1, 282–289. Retrieved from https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers.
Lee, C.-C. (2016). Evaluative language and topic extraction: An aspect-based sentiment analysis on online travel blogs. (Unpublished master's thesis), National Taiwan University, Taipei, Taiwan.
Lee, S. Y. M., Chen, Y., Huang, C. R., & Li, S. (2013). Detecting emotion causes with a linguistic rule-based approach Computational Intelligence, 29(3), 390–416. doi: 10.1111/j.1467-8640.2012.00459.x.
Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago, IL: University of Chicago Press.
Li, S., Xia, R., Zong, C., & Huang, C.-R. (2009). A framework of feature selection methods for text categorization. Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, 692-700. Retrieved from https://www.aclweb.org/anthology/P09-1078.pdf.
Li, T.-t., & Ji, D.-h. (2015). Jīyú SVM hé CRF duō tèzhēng zǔhé de wéibó qínggǎn fēnxī [Sentiment analysis of micro-blog based on SVM and CRF using various combinations of features]. Jìsuànjī yìngyòng yánjiū [Application Research of Computers], 32(4), 978–981. doi: 10.3969/j.issn.1001-3695.2015.04.004.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. doi: 10.2200/S00416ED1V01Y201204HLT016.
Liu, L., Lei, M., & Wang, H. (2013). Combining domain-specific sentiment lexicon with hownet for chinese sentiment analysis. Journal of Computers, 8(4), 878–883. doi: 10.4304/jcp.8.4.878-883.
Liu, Z., Li, H., & Lu, L. (2014). An investigation of online review helpfulness based on movie reviews. African Journal of Business Management, 8(12), 441–450. doi: 10.5897/AJBM11.2628.
Magistry, P., Hsieh, S.-K., & Chang, Y.-Y. (2016). Sentiment detection in micro-blogs using unsupervised chunk extraction. Lingua Sinica, 2(1), 1–10. doi: 10.1186/s40655-015-0010-8.
Magistry, P., & Sagot, B. (2012). Unsupervized word segmentation: The case for Mandarin Chinese. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 383–387. Retrieved from https://www.aclweb.org/anthology/P12-2075.pdf.
Mann, W. C., & Thompson, S. A. (1988). Rhetorial Structure Theory: Towards a functional theory of text organization. Text & Talk, 8(3), 243–281. doi: 10.1515/text.1.1988.8.3.243.
Martin, J. R., & White, P. (2005). The language of evaluation: Appraisal in English. London: Palgrave.
McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification. Paper presented at the 1998 Association for the Advancement of Artificial Intelligence Workshop on Learning for Text Categorization, Madison, Wisconsin. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.9324&rep=rep1&type=pdf.
Mishra, D. P., Heide, J. B., & Cort, S. G. (1998). Information asymmetry and levels of agency relationships. Journal of Marketing Research, 35, 277–295. doi: 10.1177/002224379803500301.
Mohammad, S., Dunne, C., & Dorr, B. (2009). Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. Proceedings of the 14th Conference on Empirical Methods in Natural Language Processing, 599–608. Retrieved from https://www.aclweb.org/anthology/D09-1063.pdf.
Morsy, S., & Rafea, A. (2012). Improving document-level sentiment classification using contextual valence shifters. Proceedings of the 17th International Conference on Applications of Natural Language to Information Systems, 253–258. doi: 10.1007/978-3-642-31178-9_30.
Ng, V., Dasgupta, S., & Arifin, S. M. N. (2006). Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics Main Conference Poster Sessions, 611–618. Retrieved from https://www.aclweb.org/anthology/P06-2079.pdf.
Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, 271–278. doi: 10.3115/1218955.1218990.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1-2), 1–135. doi: 10.1561/1500000011.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing, 79–86. doi: 10.3115/1118693.1118704.
Polanyi, L., & Zaenen, A. (2006). Contextual valence shifters. In J. G. Shanahan, Y. Qu, & J. Wiebe (Eds.), Computing attitude and affect in text: Theory and applications (pp. 1–10). Berlin: Springer.
Ren, W. (2018). Mitigation in Chinese online consumer reviews. Discourse, Context & Media, 26, 5–12. doi: 10.1016/j.dcm.2018.01.001.
Ren, W. (2019). Intensification in online consumer reviews: Insights from Chinese. In P. G.-C. Blitvich, L. Fernández-Amaya, & M. de la O Hernández-López (Eds.), Technology mediated service encounters (pp. 199–221): John Benjamins.
Riloff, E. (1996). Automatically generating extraction patterns from untagged text. Proceedings of the 13th National Conference on Artificial Intelligence, 2, 1044–1049. Retrieved from https://www.aaai.org/Papers/AAAI/1996/AAAI96-155.pdf.
Riloff, E., & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. Proceedings of the 8th Conference on Empirical Methods in Natural Language Processing, 25–32. Retrieved from https://www.aclweb.org/anthology/W03-1014.pdf.
Riloff, E., Wiebe, J., & Wilson, T. (2003). Learning subjective nouns using extraction pattern bootstrapping. Proceedings of the 7th Conference on Computational Natural Language Learning (CoNLL-2003), 25–32. Retrieved from https://www.aclweb.org/anthology/W03-0404.pdf.
Scheibman, J. (2002). Point of view and grammar: Structural patterns of subjectivity in American English conversation. Amsterdam and Philadelphia: John Benjamins Publishing.
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the web. Journal of Interactive Marketing, 21(4), 76–94. doi: 10.1002/dir.20090.
Sinclair, J. (1991). Corpus, concordance, collocation. Oxford: Oxford University Press.
Socher, R., Lin, C. C.-Y., Manning, C. D., & Ng, A. Y. (2011). Parsing natural scenes and natural language with recursive neural networks. Proceedings of the 28th International Conference on Machine Learning, 129–136. Retrieved from https://nlp.stanford.edu/pubs/SocherLinNgManning_ICML2011.pdf.
Stefanowitsch, A., & Gries, S. T. (2003). Collostructions: Investigating the interaction of words and constructions. International Journal of Corpus Linguistics, 8(2), 209–243. doi: 10.1075/ijcl.8.2.03ste.
Taboada, M. (2016). Sentiment analysis: An overview from Linguistics. Annual Review of Linguistics, 2, 325–347. doi: 10.1146/annurev-linguistics-011415-040518.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37, 267–307. doi: 10.1162/COLI_a_00049.
Taboada, M., & Grieve, J. (2004). Analyzing Appraisal automatically. Proceedings of the 2004 Association for the Advancement of Artificial Intelligence Spring Symposium on Exploring Attitude and Affect in Text, 158–161. Retrieved from https://www.aaai.org/Papers/Symposia/Spring/2004/SS-04-07/SS04-07-029.pdf.
Tan, S., & Zhang, J. (2008). An empirical study of sentiment analysis for chinese documents. Expert Systems with Applications, 34(4), 2622–2629. doi: 10.1016/j.eswa.2007.05.028.
Tripathy, A., Agrawal, A., & Rath, S. K. (2016). Classification of sentiment reviews using n-gram machine learning approach. Expert Systems with Applications, 57, 117–126. doi: 10.1016/j.eswa.2016.03.028.
Trnavac, R., & Taboada, M. (2012). The contribution of nonveridical rhetorical relations to evaluation in discourse. Language Sciences, 34, 301–318. doi: 10.1016/j.langsci.2011.10.005.
Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 417–424. doi: 10.3115/1073083.1073153.
Voll, K., & Taboada, M. (2007). Not all words are created equal: Extracting semantic orientation as a function of adjective relevance. AI 2007: Advances in artificial intelligence, 337–346. doi: 10.1007/978-3-540-76928-6_35.
Wang, A. (2005). Integrating and comparing others’ opinions: The effects of third-party endorsements on online purchasing. Journal of Website Promotion, 1, 105–129. doi: 10.1300/J238v01n01_09.
Wang, F., Wu, Y., & Qiu, L. (2012). Exploiting discourse relations for sentiment analysis. Proceedings of the 24th International Conference on Computational Linguistics Posters, 1311–1320. Retrieved from https://www.aclweb.org/anthology/C12-2128.pdf.
Wang, H., Yin, P., Yao, J., & Liu, J. N. K. (2013). Text feature selection for sentiment classification of Chinese online reviews. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 425–439. doi: 10.1080/0952813X.2012.721139.
Wang, J.-H., Liu, T.-W., Luo, X., & Wang, L. (2018). An LSTM approach to short text sentiment classification with word embeddings. Proceedings of the 30th Conference on Computational Linguistics and Speech Processing, 214–223. Retrieved from https://www.aclweb.org/anthology/O18-1021.pdf.
Wang, S.-M., & Ku, L.-W. (2016). ANTUSD: A large Chinese sentiment dictionary. Proceedings of the 10th International Conference on Language Resources and Evaluation, 2697–2702. Retrieved from https://www.aclweb.org/anthology/L16-1428.pdf.
Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning subjective language. Computational Linguistics, 30, 277–308. doi: 10.1162/0891201041850885
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83. doi: 10.2307/3001968.
Wilson, T., Wiebe, J., & Hoffmann, P. (2009). Recognizing contextual polarity: An exploration of features for phrase-level sentiment analysis. Computational Linguistics, 35, 399–433. doi: 10.1162/coli.08-012-R1-06-90
Wu, H.-H., Tsai, C.-R. A., Tsai, T.-H. R., & Hsu, Y.-J. J. (2013). Building a graded Chinese sentiment dictionary based on commonsense knowledge for sentiment analysis of song lyrics. Journal of Information Science and Engineering, 29(4), 647–662. Retrieved from https://pdfs.semanticscholar.org/d060/24609b4d12d64f654f8ffc4f7f6386adb105.pdf.
Xia, R., & Zong, C. (2010). Exploring the use of word relation features for sentiment classification. Proceedings of the 23rd International Conference on Computational Linguistics: Posters, 1336–1344. Retrieved from https://www.aclweb.org/anthology/C10-2153.pdf.
Xia, R., Zong, C., & Li, S. (2011). Ensemble of feature sets and classification algorithms for sentiment classification. Information sciences, 181(6), 1138–1152. doi: 10.1016/j.ins.2010.11.023.
Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. Proceedings of the 14th International Conference on Machine Learning, 412–420. Retrieved from http://nyc.lti.cs.cmu.edu/yiming/Publications/yang-icml97.pdf.
Ye, Q., Shi, W., & Li, Y. (2006). Sentiment classification for movie reviews in Chinese by improved semantic oriented approach. Proceedings of the 39th Annual Hawaii International Conference on System Sciences, 3, 53–57. doi: 10.1109/HICSS.2006.432.
Zhang, P., He, Z., & Tao, L. (2014). A study of dependency features for Chinese sentiment classification. Journal of Software, 9(11), 2877–2885. doi: 10.4304/jsw.9.11.2877-2885.
Zhang, Z., & Zong, C. (2015). Jīyú duōyàng huà tèzhēng de zhōngwén wēi bó qínggǎn fēnlèi fāngfǎ yánjiū [Sentiment analysis of Chinese microblog based on rich-features]. Zhōngwén xìnxī xuébào [Journal of Chinese Information Processing], 29(4), 134–143. Retrieved from http://jcip.cipsc.org.cn/CN/Y2015/V29/I4/134.
Zheng, L., Wang, H., & Gao, S. (2018). Sentimental feature selection for sentiment analysis of Chinese online reviews. International Journal of Machine Learning and Cybernetics, 9(1), 75–84. doi: 10.1007/s13042-015-0347-4.
Zou, B., Zhu, Q., & Zhou, G. (2015). Negation and speculation identification in Chinese language. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 656–665. doi: 10.3115/v1/P15-1064.