簡易檢索 / 詳目顯示

研究生: 陳文賢
Chen, Wen-Xian
論文名稱: 應用於遠距教學之學習專注程度偵測研究
Study on Learner's Attention Span during Online Learning
指導教授: 李忠謀
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 48
中文關鍵詞: 專注度偵測學習專注度人臉偵測機器學習遠距教學
英文關鍵詞: attention detection, learning attention, face detection, machine learning, online learning
DOI URL: http://doi.org/10.6345/NTNU202001370
論文種類: 學術論文
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行學習專注度偵測的研究,藉由專注度偵測降低因為不專注導致學習進度的落後,並且將研究應用在較需要偵測專注度的遠距教學環境。本研究提出藉由人臉偵測和機器學習判斷影片中每張影像人臉的視線位置,透過發呆偵測以及臉部位移偵測取得動作資訊,使用影像分段處理以及滑動窗口處理連續性的影像,將影片的每個區段判斷成專心或不專心的狀態。
    實驗資料來源包括高中補習班補課以及大學遠距教學兩種不同類型的學習影片,實驗結果發現專心行為判定的準確度為93%,不專心行為判定的準確度為81%。由結果得知本研究方法能有效地偵測到出現不專心行為的時間,透過臉部位移偵測方法也能避免做筆記的行為被判定為不專心。

    This research is about attention detection of learners in online learning setting. The proposed attention detection method uses face detection and machine learning to determine the learner's sight. By continuously process each frame of the video with daze detection and facial displacement detection. By using sliding window, each video segment can be judged as attentive or inattentive state.
    Experiments are conducted with two data sources, self-paced learning videos in cram schools and online learning videos of university classes. Experimental results show that the proposed method has a correct attentive behavior determination of 93%, while accuracy of the inattentive behavior determination is 81%.

    目錄 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 2 第二章 文獻探討 3 2.1 遠距教學與傳統教學比較 3 2.2 人臉偵測方法 4 2.3 專注程度判斷 5 第三章 研究方法 7 3.1 研究目標 7 3.2 偵測人臉及眼睛 8 3.2.1 人臉偵測 8 3.2.2 眼睛特徵擷取 9 3.3 影像前處理 10 3.4 動作狀態偵測 11 3.4.1 視線位置判定 11 3.4.2 發呆偵測 13 3.4.3 臉部位移偵測 14 3.5 上課行為偵測 17 3.5.1 視線位置分段處理及判定 18 3.5.2 使用滑動窗口於行為偵測 21 第四章 實驗結果與討論 22 4.1 實驗影像資料庫 22 4.1.1 視線位置資料庫 23 4.1.2 學生學習影片資料庫 23 4.2 實驗一:人眼視線位置偵測準確度 25 4.3 實驗二:專注度偵測方法調整 27 4.4 實驗三:驗證專注度偵測方法 31 4.5 實驗結果分析與討論 33 第五章 結論與未來展望 43 5.1 結論 43 5.2 未來展望 44 參考文獻 46

    [1] 王鴻勳,《結合影像偵測與模糊推論來分類學生上課學習行為》,碩士論文,臺北市立教育大學資訊科學研究所,2010年。https://hdl.handle.net/11296/v92x56。
    [2] 陳萌智、陸海文,《設計以腦波特徵為基之自調適專注力訓練平台》,管理資訊計算,第7卷,第2期,頁233-257,2018年。
    [3] 馮毓琪,《非傳統上課模式對於中低動機學生的學習影響研究》,碩士論文,國立臺灣師範大學資訊工程研究所,2013年。https://hdl.handle.net/11296/kr3y67。
    [4] 黃俊源,《學習專注力即時偵測回饋系統》,碩士論文,國立成功大學工業科學研究所,2010年。https://hdl.handle.net/11296/krt6kg。
    [5] 黃登淵、莊國楨、楊晏和、陳南樺、王嘉宏,《複雜背景下多重人臉偵測演算法之研究》,科學與工程技術期刊,第3卷,第3期,頁35-43,2007年。
    [6] 楊明儒,《使用影像處理技術監控學童在家自主學習精神狀態》,碩士論文,朝陽科技大學網路與通訊研究所,2008年。https://hdl.handle.net/11296/82ubz5。
    [7] 廖聖傑,《從學習歷程檔案建構決策樹以支援網路教學》,碩士論文,國立中山大學資訊管理研究所,2002年。https://hdl.handle.net/11296/ywku6m。
    [8] 蔡沛勳,《遠距教學之全時精神狀態偵測系統之研製》,碩士論文,朝陽科技大學網路與通訊研究所,2006年。https://hdl.handle.net/11296/2rc5k6。
    [9] 鄭俊廷,《深度學習於學生專注度分析之應用》,碩士論文,國立中央大學資訊工程研究所,2018年。https://hdl.handle.net/11296/4vmjjj。
    [10] 簡郁菱,《可應用於學生專注度之人眼開闔偵測研究》,碩士論文,國立臺灣師範大學資訊工程研究所,2012年。https://hdl.handle.net/11296/kehwaj。
    [11] 蘇信宏,《數位學習情意偵測專心程度之影像處理》,碩士論文,北台灣科學技術學院機電整合研究所,2007年。https://hdl.handle.net/11296/m7z6g9。
    [12] Brunelli, R., & Poggio, T., "Face Recognition: Features versus Templates," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1042-1052, 1993.
    [13] Cardall, S., Krupat, E., & Ulrich, M., "Live Lecture versus Video-recorded Lecture: are Students Voting with their Feet ? " Academic Medicine, vol. 83, no. 12, pp. 1174-1178, 2008.
    [14] Chen, C. M., Yang, S. M., & Yu, C. M., "Assessing the Attention Levels of Students by Using a Novel Attention Aware System based on Brainwave Signals, " In 2015 International Congress on Advanced Applied Informatics, pp. 379-384, 2015.
    [15] Höver, K. M., & Mühlhäuser, M., "Classquake: Measuring Students' Attentiveness in the Classroom, " In 2015 IEEE International Symposium on Multimedia, pp. 577-582, 2015.
    [16] Keegan, D., Theoretical principles of distance education, London: Routledge, 1993.
    [17] King, D. E., "Dlib-ml: A Machine Learning Toolkit, " Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.
    [18] Lee, H. C., Wu, C. L., & Chen, L. J., "A Crowdsourcing-based Approach to Assess Concentration Levels of Students in Class Videos, " In 2013 Conference on Technologies and Applications of Artificial Intelligence, pp. 228-233, 2013.
    [19] Liu, N. H., Chiang, C. Y., & Chu, H. C., "Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors, " Sensors, vol. 13, no. 8, pp. 10273-10286, 2013.
    [20] Sheliga, B. M., Riggio, L., & Rizzolatti, G., "Orienting of Attention and Eye Movements, " Experimental Brain Research, vol. 98, no. 3, pp. 507-522, 1994.
    [21] Viola, P., & Jones, M. J., "Robust Real-time Face Detection, " International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
    [22] Yang, G., & Huang, T. S., "Human Face Detection in Complex Background," Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994.
    [23] Yang, M. H., Kriegman, D. J., & Ahuja, N., "Detecting Faces in Images: a Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1, pp. 34-58, 2002.
    [24] Zaletelj, J., & Košir, A., "Predicting Students’ Attention in the Classroom from Kinect Facial and Body Features, " EURASIP Journal on Image and Video Processing, pp. 1-12, 2017.

    無法下載圖示 電子全文延後公開
    2025/09/01
    QR CODE