簡易檢索 / 詳目顯示

研究生: 邱蓉怡
Jung-I Chiu
論文名稱: 含主族元素 (Se、Bi) 與過渡金屬 (Mn、Ru、Mo) 團簇化合物的合成與其反應探討及化性與物性研究
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 185
中文關鍵詞: 電化學
英文關鍵詞: clusters, electrochemistry
論文種類: 學術論文
相關次數: 點閱:140下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1.Se─Ru─CuBr系統
    [SeRu5(CO)14]2─ 可經由改變不同當量CuBr及不同條件下,可得一系列Se─Ru─Cu新穎化合物,單銅 [SeRu5(CO)14CuBr]2─、鄰邊雙銅 [SeRu5(CO)14(CuBr)2]2─、四銅 [Se2Ru10(CO)28Cu4Br2]2─ 和雙銅 [Se2Ru4(CO)10Cu2Br2]2─,這一系列化合物間存在有趣的轉換關係;進一步研究及其電化學和紫外/可見光光譜,利用理論計算來佐證實驗中所得到的結果,並探討CuBr對金屬核SeRu5 vs. Se2Ru4的影響,此外與以往Te─Ru─Cu化合物比較探討主族關係的影響。

    2.Bi─Mo系統
    利用 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3Na] 與一系列金屬鹽類反應,生成 [Bu4N][BiMo3(CO)9(-OC2H4OMe)3ML] (ML = Li, Pb(NO3), Cd(OAc), Ca(OAc), HgCl2, ZnCl),而與Pb(OAc)2和Ca(MeCN)2試劑在MeOH溶劑下反應則分別得 {[[Bu4N][BiMo3(CO)9(-OMe)3Pb(OAc)]}2與[BiMo3(CO)9(-OC2H4OMe)3Ca(CH3CN)2]。進一步改以滴加不等當量的離子搭配紫外/可見光光譜,觀察陽離子捕捉和交換情形,此外對照原合成的實驗結果,討論離子進入對整個化合物的穩定性,再藉由TDDFT的理論計算探討其電子吸收能量躍遷形式。
    3.Se─Mn系統
    將化合物 [Se10Mn6(CO)18]4─ 與一系列含鹵素氧化性試劑反應。[Se10Mn6(CO)18]4─ 於CH2Cl2溶液下反應可得 [Se8Mn4(CO)12(CH)2]2─,若以MeCN為溶液與BrCH2CH2Br或碘進行反應,則生成化合物 [Se8Mn4(CO)12(Se)2]2─,而與CuCl反應,則得到未知之化合物及氧化性產物 [Se5Mn4(CO)12]2─,進一步探討化合物 [Se8Mn4(CO)12(CH)2]2─ 和[Se8Mn4(CO)12(Se)2]2─ 之間的結構轉換關係,並討論其電化學、光物理性質進行研究。

    Abstract
    1. Se─Ru─CuBr system
    When [SeRu5(CO)14]2─ was treated with various ratios of CuBr under different conditions, a series of Se─Ru─Cu clusters [SeRu5(CO)14CuBr]2─, [SeRu5(CO)14(CuBr)2]2─, [Se2Ru10(CO)28Cu4Br2]2─, and [Se2Ru4(CO)10Cu2Br2]2─ were obtained. In addition, the stepwise cluster transformation, electrochemistry, and photophysical properties of these CuBr-incorporated Se─Ru complexes were understood with the aid of DFT and TDDFT in terms of the effects of CuBr on the different metal cores, SeRu5 vs. Se2Ru4. The characteristics were further compered with the previously reported analogous Te─Ru─Cu carbonyl clusters.

    2. Bi─Mo system
    The tetrahedral-like BiMo3-cluster [BiMo3(CO)9(-OC2H4OMe)3Na]─ with three pendant chelatig ligands (OC2H4OMe)3 which exibited the binding and exchanging characteristics for various metal ions, giving a series of corresponding clusters [BiMo3(CO)9(-OC2H4OMe)3ML]─ (ML = Li, Ca(MeCN)2, Ca(OAc), Pb(NO)3, ZnCl, Cd(OAc), HgCl2), [BiMo3(CO)9(-OMe)3Pb(OAc)]22─, and [BiMo3(CO)9(-OC2H4OMe)3Ca(CH3CN)2]. The ion-exchange processes and photophysical properties of the resultant products were also innestigated by UV-vis titrations which were further understood with TDDFT in terms of different metal fragments.

    3. Se─Mn system
    When [Se10Mn6(CO)18]4─ was treated with CH2Cl2 in MeCN, the dianonic complex [Se8Mn4(CO)12(CH)2]2─ was formed. If [Se10Mn6(CO)18]4─ was treated with 1,2-dibromoethane or iodine in MeCN, [Se8Mn4(CO)12(Se)2]2─ could be obtained. In addition, [Se10Mn6(CO)18]4─ could react with CuCl to produce [Se5Mn4(CO)12]2─ and an unknown complex. Furthermore, the electrochemistry and photophysical properties of [Se8Mn4(CO)12(CH)2]2─ and [Se8Mn4(CO)12(Se)2]2─ were also studied.

    中文摘要 英文摘要 第一章 鹵化亞銅橋接硒與釕羰基團簇物之合成反應及結構轉換................................. 1 1.摘要...1 1.2 前言...................…….............................................................................................. 2 1.3 結果與討論...............……...................................................................................... 5 1.3-1 [PPh4]2[SeRu5(CO)14] ([PPh4]2[1]) 與一當量CuBr 反應..................................... 5 1.3-2 [PPh4]2[1] 與二當量CuBr 反應............................................................................ 5 1.3-3 化合物1、2b、3b、4b及5b之間的結構轉換關係........................................... 7 1.3-4 [PPh4]2[Se2Ru4(CO)10Cu2Br2] ([PPh4]2[5b]) 與二當量 AgNO3 之反應............. 9 1.3-5 合成化合物 [PPh4]2[Ru8(CO)24Cu7Br3] ([PPh4]2[6])............................................. 9 1.3-6 [PPh4]2[SeRu5(CO)14] ([PPh4]2[1]) 和一當量 MeOTf 反應................................ 10 1.3-7 化合物1、2a─2c、3b、4a、5a─5c和6之X-ray 結構比較............................ 11 1.3-8 DFT理論計算探討................................................................................................. 14 1.3-9 電化學探討............................................................................................................. 17 1.3-10 電子吸收光譜研究探討......................................................................................... 27 1.4 結論......................................................................................................................... 34 1.5 實驗部份 (Experimental Section) ......................................................................... 35 1.6 參考文獻 (references)............................................................................................ 43 第二章 含鉍與過渡金屬鉬之團簇化合物及其離子交換與理論計算探討..................... 80 2.1 摘要......................................................................................................................... 80 2.2 前言......................................................................................................................... 81 2.3 結果與討論............................................................................................................. 84 2.3-1 滴加不同當量LiCl至化合物1............................................................................. 85 2.3-2 滴加不同當量Pb(NO3)2至化合物1....................................................................... 86 2.3-3 滴加不同當量Pb(OAc)2至化合物1...................................................................... 88 2.3-4 滴加不同當量Cd(OAc)2至化合物1...................................................................... 90 2.3-5 滴加不同當量其他離子至化合物1....................................................................... 91 2.3-6 化合物1與Cu(OAc)2•H2O反應及滴加不同當量KCl和Cu(OAc)2•H2O至化合物1....................................................................................................................... 92 2.3-7 DFT理論計算探討................................................................................................. 94 2.3-8 電子吸收光譜與 TDDFT 理論計算綜合討論.................................................... 98 2.4 結論......................................................................................................................... 106 2.5 實驗部份................................................................................................................. 107 2.5-1 滴加不等當量LiCl至 [Bu4N][1]........................................................................... 108 2.5-2 滴加不等當量KCl至 [Bu4N][1]........................................................................... 108 2.5-3 滴加不等當量Pb(NO3)2至 [Bu4N][1]................................................................... 109 2.5-4 滴加不等當量Pb(OAc)2至 [Bu4N][1].................................................................. 109 2.5-5 滴加不等當量Ca(OAc)2至 [Bu4N][1].................................................................. 109 2.5-6 滴加不等當量CaCl2至 [Bu4N][1]......................................................................... 110 2.5-7 滴加不等當量Cd(OAc)2至 [Bu4N][1] ................................................................. 110 2.5-8 滴加不等當量ZnCl2至 [Bu4N][1]......................................................................... 110 2.5-9 滴加不等當量HgCl2至 [Bu4N][1] ....................................................................... 111 2.5-10 滴加不等當量Cu(OAc)2•H2O至 [Bu4N][1] ......................................................... 111 2.5-11 化合物 [Bu4N][1] 與 Cu(OAc)2•H2O反應.......................................................... 111 2.6 理論計算................................................................................................................. 112 2.7 Calculation of Binding Constant (常數計算).......................................................... 113 2.8 參考文獻................................................................................................................. 117 弟三章 含硒與過渡金屬錳所形成之團簇化合物的合成、電化學及紫外/可見光光譜探討......................................................................................................................... 149 3.1 摘要......................................................................................................................... 149 3.2 前言......................................................................................................................... 150 3.3 結果與討論............................................................................................................. 153 3.3-1 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 和CH2Cl2溶劑反應................................... 153 3.3-2 [PPN]4[Se10Mn6(CO)18] ([PPN]4[1]) 和CuCl反應................................................ 153 3.3-3 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 和CuBr反應............................................... 154 3.3-4 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 和二當量BrCH2CH2Br反應...................... 155 3.3-5 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 和一當量I2反應......................................... 156 3.3-6 化合物3與化合物2之結構轉換........................................................................... 156 3.3-7 [PPN]2[Se8Mn4(CO)12(CH2)2] ([PPN]2[2]) 和Azobenzene ((PhN)2) 反應........... 157 3.3-8 電化學探討............................................................................................................. 159 3.3-9 電子吸收光譜探討................................................................................................. 162 3.4 結論......................................................................................................................... 164 3.5 實驗部份................................................................................................................. 165 3.5-1 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 和CH2Cl2溶劑反應................................... 166 3.5-2 [PPN]4[Se10Mn6(CO)18] ([PPN]4[1]) 與 CuCl 反應............................................. 166 3.5-3 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 與CuBr 反應............................................. 167 3.5-4 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 與 BrCH2CH2Br 反應............................... 167 3.5-5 [Et4N]4[Se10Mn6(CO)18] ([Et4N]4[1]) 與 Iodine 反應........................................... 168 3.5-6 [Et4N]2[Se10Mn4(CO)12] ([Et4N]2[3]) 和CH2Cl2溶劑反應.................................... 168 3.5-7 [PPN]2[Se8Mn4(CO)12(CH2)2] ([PPN]2[2]) 和Azobenzene ((PhN)2) 反應........... 168 3.5-8 電化學分析............................................................................................................. 169 3.5-9 參考文獻................................................................................................................. 170 第四章 結論 184 4.1 Se─Ru─CuBr 系統................................................................................................ 184 4.2 Bi─Mo 系統........................................................................................................... 184 4.3 Se─Mn 系統........................................................................................................... 185

    1.(a) Churchill, M. R.; Fettinger, J. C.; Whitmire, K. H. J. Organomet. Chem. 1985, 284, 13–23. (b) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986, 25, 56–76. (c) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 91–182. (d) Mathur, P.; Chakrabarty, D.; Mavunkal, I. J. J. Cluster Sci. 1993, 4, 351–375.
    2.(a) Adams, R. D.; Kan, Y.; Zhang, Q. Organometallics 2011, 30, 328–333. (b) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409–418. (c) Sivaramakrishna, A.; Clayton, H. S.; Makhubela, B. C. E.; Moss, J. R. Coord. Chem. Rev. 2008, 252, 1460–1485. (d) Adams, R. D.; Babin, J. E.; Tanner, J. T. Organometallics 1988, 7, 2027–2033. (e) Adams, R. D.; Babin, J. E.; Natarajan, K.; Tasi, M.; Wang, J.-G. Inorg. Chem. 1987, 26, 3708–3713. (f) Adams, R. D.; Babin, J. E.; Wang, J.-G. Polyhedron. 1989, 8, 2351–2358.
    3.(a) Jakubikova, E.; Martin, R. L.; Batista, E. R. Inorg. Chem. 2010, 49, 2975–2982. (b) Geetharani, K.; Bose, S. K.; Ghosh, S. Organometallics 2011, 30, 191–194.
    4.(a) Sinha, A.; Ghatak, T.; Bera, J. K. Dalton Trans. 2010, 39, 11301–11313. (b) Adams, R. D.;Captain, B.;Zhu, L. J. Am. Chem. Soc. 2004, 126, 3042–3043. (c) Thomas, J. M.; Adams, R. D.; Boswell, E. M.; Captain, B.; Grönbeckc, H.; Rajad, R. Faraday Discuss. 2008, 138, 301–315. (d) Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20–30.
    5.(a) Knorr, M.; Pam, A.; Khatyr, A.; Strohmann, C.; Kubicki, M. M.; Rousselin, Y.; Aly, S. M.; Fortin, D.; Harvey, P. D. Inorg.Chem. 2010, 49, 5834–5844. (b) Pfitzner, A. Chem.–Eur. J. 2000, 6, 1891–1898. (c) Dehnen, S.; Eichhöfer, A.; Fenske, D. Eur. J. Inorg. Chem. 2002, 279–317. (d) Jayasekera, B.; Brock, S. L.; Lo, A. Y. H.; Schurko, R. W.; Nazri, Z. A. Chem. –Eur. J. 2005, 11, 3762–3772. (e) Bobka, R.; Roedel, J. N.; Wirth S.; Lorenz I.-P. Dalton Trans. 2010, 39, 10142–10147. (f) Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez de Arellano, M. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2227–2228.
    6.(a) Lazewski, J.; Neumann, H.; Parlinski, K. Phys. Rev. B 2004, 70, 195206. (b) Hamdadou, N.; Morsli, M.; Khelil, A.; Bernede, J. C. J. Phys. D: Appl. Phys. 2006, 39, 1042–1049.
    7.Shieh, M.; Chu, Y.-Y.; Miu, C.-Y.; Wu, P.-F.; Zeng, T.-M. Dalton Trans. 2010, 39, 1492–1503.
    8.詹莉芬,國立台灣師範大學碩士論文,1997。
    9.李俊鋒,國立台灣師範大學碩士論文,2008。
    10.謝明惠、賴韻文,未發表之結果。
    11.Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; McPartlin, M.; Neison, W. J. H. Chem. Commun. 2006, 2248–2250.
    12.(a) Beswick, M. A.; Lewis, J.; Raithby, P. R.; Ramirez de Arellano, M. C. J. Chem. Soc., Dalton Trans. 1996, 4033–4034. (b) Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W.; Liu, H-.L.; Her, J. L. Chem. –Eur. J. 2007, 13, 6605–6616. (c) Shieh, M.; Miu, C.-Y.; Lee, C.-J.; Chen, W.-C.; Chu, Y.-Y.; Chen, H.-L. Inorg. Chem. 2008, 47, 11018–11031. (d) Chen, B.-G.; Ho, C.-H.; Lee, C.-J.; Shieh, M. Inorg. Chem. 2009, 48, 10757–10768.
    13.(a) Cauzzi, D.; Graiff, C.; Predieri, G.; Tiripicchio, A.; Vignali, C. J. Chem. Soc., Dalton Trans. 1999, 237–241. (b) Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Raithby, P. R.; Wong, W.-T. J. Chem. Soc., Dalton Trans. 1993, 973–980. (c) Slawin, A. M. Z.; Smith, M. B.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 1997, 1877–1881. (d) Baistrocchi, P.; Cared, M.; Cauzzi, D.; Graiff, C.; Lanfranchi, M.; Martini, P.; G. Prcdicri,; Tiripicchio, A. lnorg. Chim. Acta. 1996, 252, 367–374. (e) Layer, T. M.; Lewis, J.; Martima, A.; Raithby, P. R. Wongb, W.-T. J. Chem. Soc., Dalton Trans. 1992, 3411–3417.
    14.(a) Luo, Q.; Li, Q.-S.; Yu, Z. H.; Xie, Y.; King, R. B.; Schaefer, H. F. J. Am. Chem. Soc. 2008, 130, 7756–7765. (b) Xu, B.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer, H. F. J. Phys. Chem. A 2009, 113, 12470–12477. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785–789.
    15.(a) Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926.
    16.(a) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066–4073. (b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735–746.
    17.謝明惠、邢凱捷,未發表之結果。
    18.謝明惠、朱晏頤,未發表之結果。
    19.Tam, A. Y.-Y.; Lam, W. H.; Wong, K. M.-C.; Zhu, N.; Yam, V. W.-W. Chem. –Eur. J. 2008, 14, 4562–4576.
    20.Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds, Wiley, New York, 1986.
    21.North, A. C. T.; Philips, D. C.; Mathews, F. S. Acta Cryst. 1968, A24, 351–359.
    22.Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
    23.Xue, X.; Wang, X. S.; Xiong, R. G.; You, X. Z.; Abrahams, B. F.; Che, C. M.; Ju, H. X. Angew. Chem., Int. Ed. 2002, 41, 2944–2946.
    24.(a) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762–1774. (b) Andrae, D.;Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123–141. (c) Bergner, A.; Dolg, M.; Kuechle,W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431–1441.
    25.(a) O’Boyle, N. M. GaussSum 2.2; 2010; available at http://gausssum.sf.net. (b) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem. 2008, 29, 839–845.
    26.S. L. Gorelsky. AOMix program, http://www.sg-chem.net/.

    下載圖示
    QR CODE