簡易檢索 / 詳目顯示

研究生: 林士堯
Lin, Shih-Yao
論文名稱: 雙界面活性劑系統之金奈米棒的合成與金奈米棒之表面修飾以及再生長銀
Synthesis of Gold Nanorods Using Binary Surfactant System, Surface Modification and Silver-Overgrowth on Gold Nanorods
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 45
中文關鍵詞: 金奈米棒表面電漿共振表面修飾金奈米團簇金-銀雙金屬結構金屬螢光增強
英文關鍵詞: Localized Surface Plasmin Resonance, gold nanoclusters
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.031.2018.B05
論文種類: 學術論文
相關次數: 點閱:232下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用雙界面活性劑系統合成出不同大小以及長寬比的金奈米棒,探討每個條件對於尺寸的影響,尺寸對於金奈米棒的表面電漿共振現象有何種影響及表面修飾過後的奈米金棒在光譜及電子顯微鏡下會如何改變,並對其表面做官能基修飾或者在表面上沉積銀原子形成金-銀雙金屬結構。由於金奈米棒的各向異性導致其具有不均勻的電磁場強度分佈,金奈米棒的兩端對於訊號(如螢光、拉曼散射光)有明顯增強的效果,因此在兩端接上具有螢光放光的金奈米團簇預期會使螢光強度增強。實驗中,表面的官能基修飾選擇使用含有硫醇基的聚合物,方便之後修飾在金奈米棒的表面,聚合反應則是以N-羧酸酐聚合法,合成出直鏈聚合物。聚合物之末端帶有氨基,能透過EDC/NHS與帶有羧酸的分子進行交聯反應,使其固定在聚合物的末端,達到固定在金奈米棒表面的目的。表面修飾後的金奈米棒可選擇性的在兩端接上物質,探討兩端強電磁場對於物質的螢光訊號影響。此外,在金奈米棒上沉積銀原子形成金-銀雙金屬結構(Au/Ag-Core/Shell) (Au@Ag nanocuboids),探討其在光譜上的變化,之後透過Galvanic Replacement reaction使用CTAC-Au(III)溶液將銀殼表面部分置換成金殼,形成具有空腔之金棒-金殼結構(gold nanorattles),這樣的結構在空腔內也具有很強的電磁場分佈,期望能在空腔的部分載入螢光物質,預測會有更高的訊號增強。

    We discuss the synthesis of gold nanorods(AuNRs) using a binary surfactant system. The size and the aspect ratios of AuNRs with tunable longitudinal surface plasmon resonance can be achieved by altering the synthesis conditions of the
    seed-mediated growth method. It’s important for investigating the effect of each condition and the growth process of AuNRs. Due to the anisotropy of AuNRs result in a non-uniform distribution of the electromagnetic field. There is a significantly enhancement upon the optical signals (such as fluorescence or Raman scattering light) at the ends of AuNRs. It’s predicable that the fluorescence signals will be enhanced if the fluorescent dye molecules or fluorescent light-emitting gold nanoclusters(AuNCs) placed at the ends of AuNRs. We functionalize the ends of AuNRs with amine-functional thiolate polymer because of carboxyl group contained fluorescent dye molecules and mercaptosuccinic acid-stablilized AuNCs. Linking up amine group with carboxyl group is achievable through EDC/NHS crosslinking. We also present that the deposition of silver atom on the surface of AuNRs forming the cuboidal Au/Ag-core/shell structure (Au@Ag nanocuboids) and then discuss the changing of morphology and the different of absorption spectra. Au@Ag nanocuboids can be further etched by Au(III)-CTAC solution results in a cavity Au rod/Au shell structure (gold nanorattles). It can be predicted if loading the fluorescence materials leads to high electric-field enhancement inside the cavity.

    謝誌 I 摘要 II Abstract III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1-1 奈米技術的發展 1 1-2 金奈米材料的特性 2 1-3 金奈米棒的合成方法 4 第二章 文獻回顧與研究動機 5 2-1 金奈米材料之表面電漿共振與光學性質 5 2-2 金奈米棒之合成方法 6 2-3 金奈米材料之表面修飾 8 2-4 金奈米棒之再生長銀 9 2-5 研究動機 11 第三章 實驗設備與實驗步驟 12 3-1 實驗藥品 12 3-2 實驗與測量之儀器 13 3-2-1 紫外光-可見光吸收光譜儀(UV-Visible Spectrophotometer) 13 3-2-2 螢光放光光譜儀(Fluorescence Spectrophotometer) 13 3-2-3 穿透式電子顯微鏡(Transmission Electron Microscope) 14 3-2-4 掃描式電子顯微鏡(Scanning Electron Microscope) 14 3-2-5 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrophotometer) 15 3-2-6 離心機(Centrifuge) 15 3-2-7 冷凍乾燥機(Freeze Dryer) 16 3-3 實驗步驟 17 3-3-1 金奈米棒之合成 17 3-3-2 金奈米團簇之合成 17 3-3-3聚合物分子之合成 18 3-3-4 金奈米棒之表面修飾 19 3-3-5 金奈米棒之再生長銀 19 3-3-6 Galvanic Replacement reaction 20 第四章 結果與討論 21 4-1 金奈米顆粒與聚合物分子之鑑定 21 4-1-1 金奈米棒 21 4-1-2 金奈米棒之定量 25 4-1-3 金奈米團簇 26 4-1-4 聚合物分子 26 4-2 金奈米棒之表面修飾 28 4-2-1 金奈米棒端點修飾金奈米團簇 28 4-2-2 金奈米棒端點修飾Streptavidin-IR800 31 4-2-3 金奈米棒之轉相 33 4-3 金/銀-核/殼結構 34 第五章 結論 39 參考文獻 40

    1. Hulla, J.E.; Sahu, S.C.; Hayes, A.W., Nanotechnology: History and future. Human & Experimental Toxicology 2015, 34(12), 1318–1321.

    2. Cao, J.; Sun, T.; Grattan, K. T. V., Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 2014, 195, 332-351.

    3. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249 (17), 1870-1901.

    4. Jana N. R.; Gearheart L.; Murphy C. J., Seed‐mediated growth approach for shape‐controlled synthesis of spheroidal and rod‐like gold nanoparticles using a surfactant template. Advanced materials 2001, 13 (18), 1389-1393.

    5. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067.

    6. Xiaohua, H.; Svetlana, N.; A., E. S. M., Gold nanorods: From synthesis and properties to biological and biomedical applications. Advanced materials 2009, 21 (48), 4880-4910.

    7. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials 2003, 15 (10), 1957-1962.

    8. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano letters 2013, 13 (2), 765-771.

    9. Willets, K. A.; Duyne, R. P. V., Localized surface plasmon resonance spectroscopy and sensing. Annual review of physical chemistry 2007, 58 (1), 267-297.

    10. Huang, X.; El-Sayed, M. A., Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010, 1 (1), 13-28.

    11. Atta, S.; Tsoulos, T. V.; Fabris, L., Shaping gold nanostar electric fields for surface-enhanced raman spectroscopy enhancement via silica coating and selective etching. The Journal of Physical Chemistry C 2016, 120 (37), 20749-20758.

    12. Liu, H.; Zhang, X.; Zhai, T.; Sander, T.; Chen, L.; Klar, P. J., Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale 2014, 6 (10), 5099-5105.

    13. Wang, X.; Shao, M.; Zhang, S.; Liu, X., Biomedical applications of gold nanorod-based multifunctional nano-carriers. Journal of Nanoparticle Research 2013, 15 (9), 1892.

    14. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M., Shape control in gold nanoparticle synthesis. Chemical Society reviews 2008, 37 (9), 1783-1791.

    15. Petrova, H.; Perez-Juste, J.; Zhang, Z.; Zhang, J.; Kosel, T.; Hartland, G. V., Crystal structure dependence of the elastic constants of gold nanorods. Journal of Materials Chemistry 2006, 16 (40), 3957-3963.

    16. Reischl, B.; Kuronen, A.; Nordlund, K., Nanoindentation of gold nanorods with an atomic force microscope. Materials Research Express 2014, 1 (4), 045042.

    17. Personick, M. L.; Mirkin, C. A., Making sense of the mayhem behind shape control in the Synthesis of Gold Nanoparticles. Journal of the American Chemical Society 2013, 135 (49), 18238-18247.

    18. Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A., Shape control of gold nanoparticles by silver underpotential deposition. Nano letters 2011, 11 (8), 3394-3398.

    19. Wang, Q.; Wang, Z.; Li, Z.; Xiao, J.; Shan, H.; Fang, Z.; Qi, L., Controlled growth and shape-directed self-assembly of gold nanoarrows. Science Advances 2017, 3 (10).

    20. Liu, M.; Guyot-Sionnest, P., Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. The Journal of Physical Chemistry B 2005, 109 (47), 22192-22200.

    21. Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M., Spatially-directed oxidation of gold nanoparticles by Au(III)−CTAB complexes. The Journal of Physical Chemistry B 2005, 109 (30), 14257-14261.

    22. Xia, Y.; Xia, X.; Peng, H.-C., Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. Journal of the American Chemical Society 2015, 137 (25), 7947-7966.

    23. Durovic, M. D.; Puchta, R.; Bugarcic, Z. D.; van Eldik, R., Studies on the reactions of [AuCl4]- with different nucleophiles in aqueous solution. Dalton Transactions 2014, 43 (23), 8620-8632.

    24. Schwerdtfeger, P., Relativistic effects in gold chemistry. 2. The stability of complex halides of gold(III). Journal of the American Chemical Society 1989, 111 (18), 7261-7262.

    25. Khlebtsov, B. N.; Khanadeev, V. A.; Ye, J.; Sukhorukov, G. B.; Khlebtsov, N. G., Overgrowth of gold Nanorods by using a binary surfactant mixture. Langmuir : the ACS journal of surfaces and colloids 2014, 30 (6), 1696-1703.

    26. Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J., Surface chemistry of gold nanorods. Langmuir : the ACS journal of surfaces and colloids 2016, 32 (39), 9905-9921.

    27. Jia, H.; Fang, C.; Zhu, X.-M.; Ruan, Q.; Wang, Y.-X. J.; Wang, J., Synthesis of absorption-dominant small gold nanorods and their plasmonic properties. Langmuir : the ACS journal of surfaces and colloids 2015, 31 (26), 7418-7426.

    28. Feng, W.; Si, C.; Zhihong, B.; Jianfang, W., Anisotropic overgrowth of metal heterostructures induced by a site‐selective silica coating. Angewandte Chemie International Edition 2013, 52 (39), 10344-10348.

    29. Hinman, J. G.; Eller, J. R.; Lin, W.; Li, J.; Li, J.; Murphy, C. J., Oxidation state of capping agent affects spatial reactivity on gold nanorods. Journal of the American Chemical Society 2017, 139 (29), 9851-9854.

    30. He, J.; Unser, S.; Bruzas, I.; Cary, R.; Shi, Z.; Mehra, R.; Aron, K.; Sagle, L., The facile removal of CTAB from the surface of gold nanorods. Colloids and Surfaces B: Biointerfaces 2018, 163, 140-145.

    31. Casas, J.; Venkataramasubramani, M.; Wang, Y.; Tang, L., Replacement of cetyltrimethylammoniumbromide bilayer on gold nanorod by alkanethiol crosslinker for enhanced plasmon resonance sensitivity. Biosensors and Bioelectronics 2013, 49, 525-530.

    32. Wijaya, A.; Hamad-Schifferli, K., Ligand Customization and DNA Functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir : the ACS journal of surfaces and colloids 2008, 24 (18), 9966-9969.

    33. Elbert, K. C.; Jishkariani, D.; Wu, Y.; Lee, J. D.; Donnio, B.; Murray, C. B., Design, self-assembly, and switchable wettability in hydrophobic, hydrophilic, and Janus dendritic ligand–gold nanoparticle hybrid materials. Chemistry of Materials 2017, 29 (20), 8737-8746.

    34. Moyuan, C.; Jiasheng, X.; Cunming, Y.; Kan, L.; Lei, J., Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small 2015, 11 (34), 4379-4384.

    35. Xiaoge, H.; Wenlong, C.; Tie, W.; Erkang, W.; Shaojun, D., Well-ordered end-to-end linkage of gold nanorods. Nanotechnology 2005, 16 (10), 2164.

    36. Yan, J.; Chaudhary, K.; Chul Bae, S.; Lewis, J. A.; Granick, S., Colloidal ribbons and rings from Janus magnetic rods. Nature communications 2013, 4, 1516.

    37. Chen, H.; Shao, L.; Li, Q.; Wang, J., Gold nanorods and their plasmonic properties. Chemical Society reviews 2013, 42 (7), 2679-2724.

    38. Ghosh, S. K.; Nath, S.; Kundu, S.; Esumi, K.; Pal, T., Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. The Journal of Physical Chemistry B 2004, 108 (37), 13963-13971.

    39. Yang, J.; Wu, J.-C.; Wu, Y.-C.; Wang, J.-K.; Chen, C.-C., Organic solvent dependence of plasma resonance of gold nanorods: A simple relationship. Chemical Physics Letters 2005, 416 (4), 215-219.

    40. Vigderman, L.; Zubarev, E. R., High-yield synthesis of gold nanorods with longitudinal SPR oeak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials 2013, 25 (8), 1450-1457.

    41. Ruibin, J.; Huanjun, C.; Lei, S.; Qian, L.; Jianfang, W., Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods. Advanced materials 2012, 24 (35), OP200-OP207.

    42. Schnepf, M. J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Forster, S.; Bals, S.; Konig, T. A. F.; Fery, A., Nanorattles with tailored electric field enhancement. Nanoscale 2017, 9 (27), 9376-9385.

    43. Liu, K.-K.; Tadepalli, S.; Tian, L.; Singamaneni, S., Size-dependent surface enhanced raman scattering activity of plasmonic nanorattles. Chemistry of Materials 2015, 27 (15), 5261-5270.

    44. Liu, K.-K.; Tadepalli, S.; Kumari, G.; Banerjee, P.; Tian, L.; Jain, P. K.; Singamaneni, S., Polarization-dependent surface-enhanced raman scattering activity of anisotropic plasmonic nanorattles. The Journal of Physical Chemistry C 2016, 120 (30), 16899-16906.

    45. Xiong, W.; Mazid, R.; Yap, L. W.; Li, X.; Cheng, W., Plasmonic caged gold nanorods for near-infrared light controlled drug delivery. Nanoscale 2014, 6 (23), 14388-14393.

    46. Lista, M.; Liu, D. Z.; Mulvaney, P., Phase transfer of noble metal nanoparticles to organic solvents. Langmuir 2014, 30 (8), 1932-1938.

    47. Wijaya, A.; Hamad-Schifferli, K., Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir 2008, 24 (18), 9966-9969.

    48. López-Millán, A.; Zavala-Rivera, P.; Esquivel, R.; Carrillo-Torres, R.; Álvarez, E.; Moreno, R. A.; Guzmán-Zamudio, R.; Lucero-Acuña, A., Aqueous-Organic Phase Transfer of Gold and Silver Nanoparticles Using Thiol-Modified Oleic Acid. 2017; Vol. 7, p 1-10.

    49. Grillet, N.; Manchon, D.; Bertorelle, F.; Bonnet, C.; Broyer, M.; Cottancin, E.; Lermé, J.; Hillenkamp, M.; Pellarin, M., Plasmon coupling in silver nanocube dimers: Resonance splitting induced by edge rounding. ACS Nano 2011, 5 (12), 9450-9462.

    50. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez-Juste, J.; Liz-Marzán, L. M., A “Tips and Tricks” Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters 2015, 6 (21), 4270-4279.

    下載圖示
    QR CODE